Bifurcation Calculus by the Extended Functional Method
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 23-38
Voir la notice de l'article provenant de la source Math-Net.Ru
We justify variational principles of a new type corresponding to bifurcations of solutions for families of equations given in variational form. To illustrate the method, we consider elliptic equations with sign-indefinite nonlinearities and prove the existence of pairwise creation-annihilation bifurcations of their positive solutions. The corresponding bifurcation points are expressed via explicitly specified variational principles.
Mots-clés :
bifurcation of solutions, elliptic equation
Keywords: minimax problem, sign-indefinite nonlinearity.
Keywords: minimax problem, sign-indefinite nonlinearity.
@article{FAA_2007_41_1_a1,
author = {Ya. Sh. Il'yasov},
title = {Bifurcation {Calculus} by the {Extended} {Functional} {Method}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {23--38},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a1/}
}
Ya. Sh. Il'yasov. Bifurcation Calculus by the Extended Functional Method. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 23-38. http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a1/