Character Formulas for the Operad of Two Compatible Brackets and for the Bi-Hamiltonian Operad
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 1-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the dimensions of the components for the operad of two compatible brackets and for the bi-Hamiltonian operad. We also obtain character formulas for the representations of symmetric groups and $SL_2$ in these spaces.
Mots-clés : compatible Poisson brackets, Koszul operad
Keywords: distributive law, Cohen–Macaulay poset.
@article{FAA_2007_41_1_a0,
     author = {V. V. Dotsenko and A. S. Khoroshkin},
     title = {Character {Formulas} for the {Operad} of {Two} {Compatible} {Brackets} and for the {Bi-Hamiltonian} {Operad}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--22},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a0/}
}
TY  - JOUR
AU  - V. V. Dotsenko
AU  - A. S. Khoroshkin
TI  - Character Formulas for the Operad of Two Compatible Brackets and for the Bi-Hamiltonian Operad
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 1
EP  - 22
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a0/
LA  - ru
ID  - FAA_2007_41_1_a0
ER  - 
%0 Journal Article
%A V. V. Dotsenko
%A A. S. Khoroshkin
%T Character Formulas for the Operad of Two Compatible Brackets and for the Bi-Hamiltonian Operad
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 1-22
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a0/
%G ru
%F FAA_2007_41_1_a0
V. V. Dotsenko; A. S. Khoroshkin. Character Formulas for the Operad of Two Compatible Brackets and for the Bi-Hamiltonian Operad. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a0/

[1] M. A. Bershtein, Chastnoe soobschenie, 2004

[2] M. A. Bershtein, V. V. Dotsenko, A. S. Khoroshkin, Kvadratichnye algebry, svyazannye s bigamiltonovoi operadoi, gotovitsya k pechati

[3] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika, Mir, M., 1998 | MR

[4] A. A. Klyachko, “Elementy Li v tenzornoi algebre”, Sib. mat. zhurnal, XV:6 (1974), 1296–1304 | MR

[5] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[6] V. A. Smirnov, Simplitsialnye i operadnye metody v teorii gomotopii, Faktorial Press, M., 2002

[7] R. Stenli, Perechislitelnaya kombinatorika, Mir, M., 1990 | MR

[8] A. S. Khoroshkin, Koshulevy operady i distributivnye reshetki, gotovitsya k pechati

[9] A. Björner, M. Wachs, “On lexicographically shellable posets”, Trans. Amer. Math. Soc., 277:1 (1983), 323–341 | DOI | MR | Zbl

[10] A. J. Brandt, “The free Lie ring and Lie representations of the full linear group”, Trans. Amer. Math. Soc., 56 (1944), 528–536 | DOI | MR | Zbl

[11] F. Chapoton, B. Vallette, Pointed and multi-pointed partitions of types A and B, http://arxiv.org/math.QA/0410051

[12] B. Fresse, “Koszul duality of operads and homology of partition posets”, Contemp. Math., 346 (2004), 115–215 | DOI | MR | Zbl

[13] V. Ginzburg, M. Kapranov, “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl

[14] M. Haiman, Vanishing theorems and character formulas for Hilbert scheme of points on a plane, http://arxiv.org/math.AG/0201148

[15] M. Markl, Distributive laws and Koszulness, http://arxiv.org/hep-th/9409192

[16] M. Markl, S. Shnider, J. D. Stasheff, Operads in Algebra, Topology and Physics, Mathematical Surveys and Monographs, 96, Amer. Math. Soc., Providence, Rhode Island, 2002 | MR | Zbl

[17] B. Vallette, Homology of generalized partition posets, http://arxiv.org/math.AT/0405312 | MR