Keywords: Segal–Bargmann transform, theta-function
@article{FAA_2006_40_4_a8,
author = {Yu. A. Neretin},
title = {Perelomov {Problem} and {Inversion} of the {Segal{\textendash}Bargmann} {Transform}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {104--107},
year = {2006},
volume = {40},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a8/}
}
Yu. A. Neretin. Perelomov Problem and Inversion of the Segal–Bargmann Transform. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 104-107. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a8/
[1] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl
[2] V. Bargmann, P. Butera, L. Girardello, J. R. Klauder, Rep. Math. Phys., 2:4 (1971), 221–228 | DOI | MR
[3] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, MA, 2001 | MR | Zbl
[4] A. J. E. M. Janssen, Appl. Comput. Harmon. Anal., 1:4 (1994), 330–354 | DOI | MR
[5] B. Ya. Levin, Raspredelenie nulei tselykh funktsii, GITTL, M., 1956
[6] Yu. I. Lyubarskiĭ, Entire and Subharmonic Functions, Adv. Soviet Math., 11, Amer. Math. Soc., Providence, RI, 1992, 167–180 | MR
[7] A. M. Perelomov, Teoret. Mat. Fiz., 6:2 (1971), 213–224 | MR
[8] A. Perelomov, Generalized Coherent States and Their Applications, Springer-Verlag, Berlin, 1986 | MR | Zbl