Entropy Extension
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 65-71

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of $\ell_{\infty}$. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.
Keywords: metric entropy, entropy extension, entropy lifting, entropy decomposition, covering numbers.
@article{FAA_2006_40_4_a5,
     author = {A. E. Litvak and V. D. Milman and A. Pajor and N. Tomczak-Jaegermann},
     title = {Entropy {Extension}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a5/}
}
TY  - JOUR
AU  - A. E. Litvak
AU  - V. D. Milman
AU  - A. Pajor
AU  - N. Tomczak-Jaegermann
TI  - Entropy Extension
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 65
EP  - 71
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a5/
LA  - ru
ID  - FAA_2006_40_4_a5
ER  - 
%0 Journal Article
%A A. E. Litvak
%A V. D. Milman
%A A. Pajor
%A N. Tomczak-Jaegermann
%T Entropy Extension
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 65-71
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a5/
%G ru
%F FAA_2006_40_4_a5
A. E. Litvak; V. D. Milman; A. Pajor; N. Tomczak-Jaegermann. Entropy Extension. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 65-71. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a5/