Admissible Majorants for Model Subspaces, and Arguments of Inner Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Theta$ be an inner function in the upper half-plane $\mathbb{C}^+$ and let $K_\Theta$ denote the model subspace $H^2\ominus\Theta H^2$ of the Hardy space $H^2=H^2(\mathbb{C}^+)$. A nonnegative function $w$ on the real line is said to be an admissible majorant for $K_\Theta$ if there exists a nonzero function $f\in K_\Theta$ such that $|f|\le w$ a.e. on $\mathbb{R}$. We prove a refined version of the parametrization formula for $K_\Theta$-admissible majorants and simplify the admissibility criterion (in terms of $\arg\Theta$) obtained in [V. P. Havin and J. Mashreghi, "Admissible majorants for model subspaces of $H^2$. Part I: slow winding of the generating inner function", Canad. J. Math., 55, 6 (2003), 1231–1263]. We show that, for every inner function $\Theta$, there exist minimal $K_\Theta$-admissible majorants. The relationship between admissibility and some weighted approximation problems is considered.
Keywords: Hardy space, inner function, model subspace, entire function, Beurling–Malliavin theorem.
@article{FAA_2006_40_4_a1,
     author = {A. D. Baranov and V. P. Havin},
     title = {Admissible {Majorants} for {Model} {Subspaces,} and {Arguments} of {Inner} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a1/}
}
TY  - JOUR
AU  - A. D. Baranov
AU  - V. P. Havin
TI  - Admissible Majorants for Model Subspaces, and Arguments of Inner Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 3
EP  - 21
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a1/
LA  - ru
ID  - FAA_2006_40_4_a1
ER  - 
%0 Journal Article
%A A. D. Baranov
%A V. P. Havin
%T Admissible Majorants for Model Subspaces, and Arguments of Inner Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 3-21
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a1/
%G ru
%F FAA_2006_40_4_a1
A. D. Baranov; V. P. Havin. Admissible Majorants for Model Subspaces, and Arguments of Inner Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a1/

[1] A. D. Baranov, “Polynomials in the de Branges spaces of entire functions”, Ark. Mat., 44:1 (2006), 16–38 | DOI | MR

[2] A. Baranov, “Completeness and Riesz bases of reproducing kernels in model subspaces”, Int. Math. Res. Not., 2006, Art. ID 81530, 34 pp. | MR | Zbl

[3] A. D. Baranov, A. A. Borichev, V. P. Havin, “Majorants of meromorphic functions with fixed poles”, Indiana Univ. Math. J., 56:4 (2007), 1595–1628 | DOI | MR

[4] A. Beurling, P. Malliavin, “On Fourier transforms of measures with compact support”, Acta Math., 107 (1962), 291–309 | DOI | MR | Zbl

[5] L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, Englewood Cliffs, NJ, 1968 | MR | Zbl

[6] J. A. Cima, W. T. Ross, The Backward Shift on the Hardy Space, Math. Surveys Monographs, 79, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[7] V. Havin, B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, 1994 | MR | Zbl

[8] V. P. Havin, J. Mashreghi, “Admissible majorants for model subspaces of $H^2$. Part I: slow winding of the generating inner function”, Canad. J. Math., 55:6 (2003), 1231–1263 | DOI | MR | Zbl

[9] V. P. Havin, J. Mashreghi, “Admissible majorants for model subspaces of $H^2$. Part II: fast winding of the generating inner function”, Canad. J. Math., 55:6 (2003), 1264–1301 | DOI | MR | Zbl

[10] M. Kaltenbäck, H. Woracek, “Hermite–Biehler functions with zeros close to the imaginary axis”, Proc. Amer. Math. Soc., 133:1 (2005), 245–255 | DOI | MR | Zbl

[11] P. Koosis, The Logarithmic Integral, I, Cambridge Stud. Adv. Math., 12, 1988 | MR | Zbl

[12] P. Koosis, The Logarithmic Integral, II, Cambridge Stud. Adv. Math., 21, 1992 | MR | Zbl

[13] P. Koosis, Leçons sur le théorème de Beurling et Malliavin, Les Publications CRM, Montréal, 1996 | MR | Zbl

[14] Dzh. Mashregi, F. L. Nazarov, V. P. Khavin, “Teorema Berlinga–Malyavena: sedmoe dokazatelstvo”, Algebra i analiz, 17:5 (2005), 3–68 | MR

[15] H. P. McKean, “Some questions about Hardy functions”, Linear and Complex Analysis, Problem Book 3, Part I, Lecture Notes in Math., 1573, eds. V. P. Havin, N. K. Nikolski, 1994, 157–158 | MR

[16] N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading, vol. 1–2, Math. Surveys Monographs, 92–93, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[17] V. V. Peller, Operatory Gankelya i ikh prilozheniya, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2005