Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2006_40_4_a1, author = {A. D. Baranov and V. P. Havin}, title = {Admissible {Majorants} for {Model} {Subspaces,} and {Arguments} of {Inner} {Functions}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--21}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a1/} }
TY - JOUR AU - A. D. Baranov AU - V. P. Havin TI - Admissible Majorants for Model Subspaces, and Arguments of Inner Functions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2006 SP - 3 EP - 21 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a1/ LA - ru ID - FAA_2006_40_4_a1 ER -
A. D. Baranov; V. P. Havin. Admissible Majorants for Model Subspaces, and Arguments of Inner Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a1/
[1] A. D. Baranov, “Polynomials in the de Branges spaces of entire functions”, Ark. Mat., 44:1 (2006), 16–38 | DOI | MR
[2] A. Baranov, “Completeness and Riesz bases of reproducing kernels in model subspaces”, Int. Math. Res. Not., 2006, Art. ID 81530, 34 pp. | MR | Zbl
[3] A. D. Baranov, A. A. Borichev, V. P. Havin, “Majorants of meromorphic functions with fixed poles”, Indiana Univ. Math. J., 56:4 (2007), 1595–1628 | DOI | MR
[4] A. Beurling, P. Malliavin, “On Fourier transforms of measures with compact support”, Acta Math., 107 (1962), 291–309 | DOI | MR | Zbl
[5] L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, Englewood Cliffs, NJ, 1968 | MR | Zbl
[6] J. A. Cima, W. T. Ross, The Backward Shift on the Hardy Space, Math. Surveys Monographs, 79, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl
[7] V. Havin, B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, 1994 | MR | Zbl
[8] V. P. Havin, J. Mashreghi, “Admissible majorants for model subspaces of $H^2$. Part I: slow winding of the generating inner function”, Canad. J. Math., 55:6 (2003), 1231–1263 | DOI | MR | Zbl
[9] V. P. Havin, J. Mashreghi, “Admissible majorants for model subspaces of $H^2$. Part II: fast winding of the generating inner function”, Canad. J. Math., 55:6 (2003), 1264–1301 | DOI | MR | Zbl
[10] M. Kaltenbäck, H. Woracek, “Hermite–Biehler functions with zeros close to the imaginary axis”, Proc. Amer. Math. Soc., 133:1 (2005), 245–255 | DOI | MR | Zbl
[11] P. Koosis, The Logarithmic Integral, I, Cambridge Stud. Adv. Math., 12, 1988 | MR | Zbl
[12] P. Koosis, The Logarithmic Integral, II, Cambridge Stud. Adv. Math., 21, 1992 | MR | Zbl
[13] P. Koosis, Leçons sur le théorème de Beurling et Malliavin, Les Publications CRM, Montréal, 1996 | MR | Zbl
[14] Dzh. Mashregi, F. L. Nazarov, V. P. Khavin, “Teorema Berlinga–Malyavena: sedmoe dokazatelstvo”, Algebra i analiz, 17:5 (2005), 3–68 | MR
[15] H. P. McKean, “Some questions about Hardy functions”, Linear and Complex Analysis, Problem Book 3, Part I, Lecture Notes in Math., 1573, eds. V. P. Havin, N. K. Nikolski, 1994, 157–158 | MR
[16] N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading, vol. 1–2, Math. Surveys Monographs, 92–93, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[17] V. V. Peller, Operatory Gankelya i ikh prilozheniya, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2005