Tunnel Canonical Operator in Thermodynamics
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 12-29

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a natural measure on the thermodynamic Lagrangian manifold. The measure is defined via the kinetic coefficients. We study the accuracy of the asymptotics provided by the canonical operator for the derivatives of the logarithm of the partition function.
Keywords: thermodynamic Lagrangian manifold, kinetic coefficients, measure, phenomenological semiclassical approximation, tunnel canonical operator, statistical potential.
@article{FAA_2006_40_3_a2,
     author = {V. P. Maslov and V. E. Nazaikinskii},
     title = {Tunnel {Canonical} {Operator} in {Thermodynamics}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {12--29},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a2/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - V. E. Nazaikinskii
TI  - Tunnel Canonical Operator in Thermodynamics
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 12
EP  - 29
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a2/
LA  - ru
ID  - FAA_2006_40_3_a2
ER  - 
%0 Journal Article
%A V. P. Maslov
%A V. E. Nazaikinskii
%T Tunnel Canonical Operator in Thermodynamics
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 12-29
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a2/
%G ru
%F FAA_2006_40_3_a2
V. P. Maslov; V. E. Nazaikinskii. Tunnel Canonical Operator in Thermodynamics. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 12-29. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a2/