Additivity of Homological Dimensions for a Class of Banach Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 93-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be a metrizable compact space. Suppose that its derived set of some finite order is empty. Let $B$ be a unital Banach algebra, and let $\widehat{\otimes}$ stand for the projective tensor product. We prove the additivity formulas $\operatorname{dg}C(\Omega)\widehat{\otimes}B=\operatorname{dg}C(\Omega)+\operatorname{dg}B$ and $\operatorname{db}C(\Omega)\widehat{\otimes}B=\operatorname{db}C(\Omega)+\operatorname{db}B$ for the global homological dimension and the homological bidimension. Thus these formulas are true for a new class of commutative Banach algebras in addition to those considered earlier by Selivanov.
Mots-clés : global homological dimension, homological bidimension
Keywords: projective Banach module, metrizable compact space, derived set.
@article{FAA_2006_40_3_a13,
     author = {S. B. Tabaldyev},
     title = {Additivity of {Homological} {Dimensions} for a {Class} of {Banach} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--95},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a13/}
}
TY  - JOUR
AU  - S. B. Tabaldyev
TI  - Additivity of Homological Dimensions for a Class of Banach Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 93
EP  - 95
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a13/
LA  - ru
ID  - FAA_2006_40_3_a13
ER  - 
%0 Journal Article
%A S. B. Tabaldyev
%T Additivity of Homological Dimensions for a Class of Banach Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 93-95
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a13/
%G ru
%F FAA_2006_40_3_a13
S. B. Tabaldyev. Additivity of Homological Dimensions for a Class of Banach Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 93-95. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a13/

[1] Yu. V. Selivanov, Banach Algebras'97, eds. E. Albrecht and M. Mathieu, Walter de Gruyter, Berlin, 1998, 441–459 | DOI | MR | Zbl

[2] K. Kuratovskii, Topologiya, t. 1, Mir, M., 1966 | MR

[3] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR

[4] A. Ya. Khelemskii, Trudy seminara im. I. G. Petrovskogo, 3, 1978, 223–242 | Zbl

[5] S. B. Tabaldyev, Bull. London Math. Soc., 37 (2005), 927–932 | DOI | MR | Zbl