A Description of Smooth Vectors of the Weil Representation in the Geometric Realization
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 90-93
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe the image of the Weil representation of the double covering of the symplectic group in the Schwartz space in the so-called geometric realization, i.e., in holomorphic functions on the symmetric domain called the Siegel upper half-plane.
Keywords:
Weil representation, Schwartz space, Siegel upper half-plane.
@article{FAA_2006_40_3_a12,
author = {A. V. Stoyanovskii},
title = {A {Description} of {Smooth} {Vectors} of the {Weil} {Representation} in the {Geometric} {Realization}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {90--93},
year = {2006},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a12/}
}
TY - JOUR AU - A. V. Stoyanovskii TI - A Description of Smooth Vectors of the Weil Representation in the Geometric Realization JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2006 SP - 90 EP - 93 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a12/ LA - ru ID - FAA_2006_40_3_a12 ER -
A. V. Stoyanovskii. A Description of Smooth Vectors of the Weil Representation in the Geometric Realization. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 90-93. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a12/
[1] Zh. Lion, M. Vern, Predstavlenie Veilya, indeks Maslova i teta-ryady, Mir, M., 1983 | MR | Zbl
[2] Yu. A. Neretin, Contemporary Mathematical Physics, Transl. Amer. Math. Soc. Ser. 2, 175, 1996, 97–135 | MR | Zbl
[3] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 3, Mir, M., 1987 | MR
[4] Yu. A. Neretin, http://arxiv.org/math.RT/0012220
[5] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 2. Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | Zbl