Traces on Infinite-Dimensional Brauer Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem describing central measures for random walks on graded graphs. Using this theorem, we obtain the list of all finite traces on three infinite-dimensional algebras, namely, on the Brauer algebra, the walled Brauer algebra, and the partition algebra. The main result is that these lists coincide with the list of traces of the symmetric group or (for the walled Brauer algebra) of the square of the symmetric group.
Keywords: Brauer algebra, walled Brauer algebra, central measure, finite trace.
Mots-clés : partition algebra
@article{FAA_2006_40_3_a1,
     author = {A. M. Vershik and P. P. Nikitin},
     title = {Traces on {Infinite-Dimensional} {Brauer} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - P. P. Nikitin
TI  - Traces on Infinite-Dimensional Brauer Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 3
EP  - 11
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a1/
LA  - ru
ID  - FAA_2006_40_3_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A P. P. Nikitin
%T Traces on Infinite-Dimensional Brauer Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 3-11
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a1/
%G ru
%F FAA_2006_40_3_a1
A. M. Vershik; P. P. Nikitin. Traces on Infinite-Dimensional Brauer Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a1/

[1] G. Veil, Klassicheskie gruppy, IL, M., 1947

[2] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR

[3] A. M. Vershik, K. P. Kokhas, “Vychislenie gruppy Grotendika algebry $\mathbb{C}(PSL(2,k))$, gde $k$ — schetnoe algebraicheski zamknutoe pole”, Algebra i analiz, 2:6 (1990), 98–106 | MR | Zbl

[4] P. P. Nikitin, Opisanie kommutanta deistviya gruppy $GL_n(\mathbb{C})$ v smeshannykh tenzorakh, Preprint POMI 08/2006

[5] V. G. Turaev, “Operatornye invarianty svyazok i $R$-matritsy”, Izv. AN SSSR, ser. matem., 53:5 (1989), 1073–1107 | MR | Zbl

[6] G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, J. Stroomer, “Tensor product representations of general linear groups and their connections with Brauer algebras”, J. Algebra, 166:3 (1994), 529–567 | DOI | MR | Zbl

[7] J. S. Birman, H. Wenzl, “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., 313:1 (1989), 249–273 | DOI | MR | Zbl

[8] R. Brauer, “On algebras which are connected with the semisimple continuous groups”, Ann. of Math., 38:4 (1937), 857–872 | DOI | MR | Zbl

[9] F. M. Goodman, P. de la Harpe, V. F. R. Jones, Coxeter Graphs and Towers of Algebras, Math. Sci. Res. Inst. Publ., 14, Springer-Verlag, 1989 | MR | Zbl

[10] T. Halverson, “Characters of the centralizer algebras of mixed tensor representations of $gl(r,\mathbb{C})$ and the quantum group $\mathcal{U}_q(gl(r,\mathbb{C}))$”, Pacific J. Math., 174:2 (1996), 359–410 | DOI | MR | Zbl

[11] T. Halverson, A. Ram., “Partition algebras”, European J. Combin., 26:6 (2005), 869–921 | DOI | MR | Zbl

[12] V. F. R. Jones, “Index for subfactors”, Invent. Math., 72:1 (1983), 1–25 | DOI | MR | Zbl

[13] S. V. Kerov, “Characters of Hecke and Birman–Wenzl algebras”, Quantum Groups (Proc. Workshops Euler Int. Math. Inst., Leningrad, USSR), Lecture Notes in Math., 1510, 1991, 335–340 | DOI | MR | Zbl

[14] K. Koike, “On the decomposition of tensor products of the representations of classical groups: By means of universal characters”, Adv. Math., 74:1 (1989), 57–86 | DOI | MR | Zbl

[15] M. Kosuda, J. Murakami, “Centralizer algebras of the mixed tensor representations of quantum group $u_q(gl(m,\mathbb{C}))$”, Osaka J. Math., 30 (1993), 475–507 | MR | Zbl

[16] R. Leduc, A two-parameter version of the centralizer algebra of mixed tensor representations of quantum $GL(r)$, PhD thesis, University of Wisconsin, Madison, 1994 | MR

[17] P. Martin, “The partition algebra and the Potts model transfer matrix spectrum in high dimensions”, J. Phys. A, 33:19 (2000), 3669–3695 | DOI | MR | Zbl

[18] J. Murakami, “The Kauffman polynomial of links and the representation theory”, Osaka J. Math., 24:4 (1987), 745–758 | MR | Zbl

[19] D. Voiculescu, S. Strătilă, Representations of AF-algebras and of the group $U(\infty)$, Lecture Notes in Math., 486, 1975 | MR

[20] H. Wenzl, “On the structure of Brauer's centralizer algebras”, Ann. of Math., 129:1 (1988), 173–193 | DOI | MR