Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2006_40_3_a1, author = {A. M. Vershik and P. P. Nikitin}, title = {Traces on {Infinite-Dimensional} {Brauer} {Algebras}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--11}, publisher = {mathdoc}, volume = {40}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a1/} }
A. M. Vershik; P. P. Nikitin. Traces on Infinite-Dimensional Brauer Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a1/
[1] G. Veil, Klassicheskie gruppy, IL, M., 1947
[2] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR
[3] A. M. Vershik, K. P. Kokhas, “Vychislenie gruppy Grotendika algebry $\mathbb{C}(PSL(2,k))$, gde $k$ — schetnoe algebraicheski zamknutoe pole”, Algebra i analiz, 2:6 (1990), 98–106 | MR | Zbl
[4] P. P. Nikitin, Opisanie kommutanta deistviya gruppy $GL_n(\mathbb{C})$ v smeshannykh tenzorakh, Preprint POMI 08/2006
[5] V. G. Turaev, “Operatornye invarianty svyazok i $R$-matritsy”, Izv. AN SSSR, ser. matem., 53:5 (1989), 1073–1107 | MR | Zbl
[6] G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, J. Stroomer, “Tensor product representations of general linear groups and their connections with Brauer algebras”, J. Algebra, 166:3 (1994), 529–567 | DOI | MR | Zbl
[7] J. S. Birman, H. Wenzl, “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., 313:1 (1989), 249–273 | DOI | MR | Zbl
[8] R. Brauer, “On algebras which are connected with the semisimple continuous groups”, Ann. of Math., 38:4 (1937), 857–872 | DOI | MR | Zbl
[9] F. M. Goodman, P. de la Harpe, V. F. R. Jones, Coxeter Graphs and Towers of Algebras, Math. Sci. Res. Inst. Publ., 14, Springer-Verlag, 1989 | MR | Zbl
[10] T. Halverson, “Characters of the centralizer algebras of mixed tensor representations of $gl(r,\mathbb{C})$ and the quantum group $\mathcal{U}_q(gl(r,\mathbb{C}))$”, Pacific J. Math., 174:2 (1996), 359–410 | DOI | MR | Zbl
[11] T. Halverson, A. Ram., “Partition algebras”, European J. Combin., 26:6 (2005), 869–921 | DOI | MR | Zbl
[12] V. F. R. Jones, “Index for subfactors”, Invent. Math., 72:1 (1983), 1–25 | DOI | MR | Zbl
[13] S. V. Kerov, “Characters of Hecke and Birman–Wenzl algebras”, Quantum Groups (Proc. Workshops Euler Int. Math. Inst., Leningrad, USSR), Lecture Notes in Math., 1510, 1991, 335–340 | DOI | MR | Zbl
[14] K. Koike, “On the decomposition of tensor products of the representations of classical groups: By means of universal characters”, Adv. Math., 74:1 (1989), 57–86 | DOI | MR | Zbl
[15] M. Kosuda, J. Murakami, “Centralizer algebras of the mixed tensor representations of quantum group $u_q(gl(m,\mathbb{C}))$”, Osaka J. Math., 30 (1993), 475–507 | MR | Zbl
[16] R. Leduc, A two-parameter version of the centralizer algebra of mixed tensor representations of quantum $GL(r)$, PhD thesis, University of Wisconsin, Madison, 1994 | MR
[17] P. Martin, “The partition algebra and the Potts model transfer matrix spectrum in high dimensions”, J. Phys. A, 33:19 (2000), 3669–3695 | DOI | MR | Zbl
[18] J. Murakami, “The Kauffman polynomial of links and the representation theory”, Osaka J. Math., 24:4 (1987), 745–758 | MR | Zbl
[19] D. Voiculescu, S. Strătilă, Representations of AF-algebras and of the group $U(\infty)$, Lecture Notes in Math., 486, 1975 | MR
[20] H. Wenzl, “On the structure of Brauer's centralizer algebras”, Ann. of Math., 129:1 (1988), 173–193 | DOI | MR