An Analog of Determinant Related to Parshin--Kato Theory and Integer Polytopes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Parshin–Kato theory involves a multilinear function of $n+1$ vectors in the $n$-dimensional vector space over the field $\mathbb{Z}/2\mathbb{Z}$. The same function arises in the computation of the product in the group $(\mathbb{C}^*)^n$ of all roots of several polynomial equations with sufficiently generic Newton polytopes. We discuss this remarkable function and related geometry of integer polytopes.
@article{FAA_2006_40_2_a5,
     author = {A. G. Khovanskii},
     title = {An {Analog} of {Determinant} {Related} to {Parshin--Kato} {Theory} and {Integer} {Polytopes}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a5/}
}
TY  - JOUR
AU  - A. G. Khovanskii
TI  - An Analog of Determinant Related to Parshin--Kato Theory and Integer Polytopes
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 55
EP  - 64
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a5/
LA  - ru
ID  - FAA_2006_40_2_a5
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%T An Analog of Determinant Related to Parshin--Kato Theory and Integer Polytopes
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 55-64
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a5/
%G ru
%F FAA_2006_40_2_a5
A. G. Khovanskii. An Analog of Determinant Related to Parshin--Kato Theory and Integer Polytopes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a5/

[1] Khovanskii A., “Newton polyhedrons, a new formula for mixed volume, product of roots of a system of equations”, The Arnoldfest, Proceedings of a conference in honour of V. I. Arnold for his 60th birthday (Toronto, Canada, June 15–21, 1997), Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 325–364 | MR | Zbl

[2] Parshin A. N., “Lokalnaya teoriya polei klassov”, Trudy MIAN, 165, 1984, 143–170 | MR | Zbl

[3] Parshin A. N., “Kogomologii Galua i gruppa Brauera lokalnykh polei”, Trudy MIAN, 183, 1990, 159–169 | MR

[4] Khovanskii A. G., Logarifmicheskii funktsional i mnogomernye simvoly, Gotovitsya k pechati