Diffeomorphisms Taking Lines to Circles, and Quaternionic Hopf Fibrations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We list all diffeomorphisms between an open subset of the four-dimensional projective space and an open subset of the four-dimensional sphere that take all line segments to arcs of round circles. These diffeomorphisms are restrictions of quaternionic Hopf fibrations and radial projections from hyperplanes to spheres.
@article{FAA_2006_40_2_a3,
     author = {V. A. Timorin},
     title = {Diffeomorphisms {Taking} {Lines} to {Circles,} and {Quaternionic} {Hopf} {Fibrations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a3/}
}
TY  - JOUR
AU  - V. A. Timorin
TI  - Diffeomorphisms Taking Lines to Circles, and Quaternionic Hopf Fibrations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 33
EP  - 43
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a3/
LA  - ru
ID  - FAA_2006_40_2_a3
ER  - 
%0 Journal Article
%A V. A. Timorin
%T Diffeomorphisms Taking Lines to Circles, and Quaternionic Hopf Fibrations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 33-43
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a3/
%G ru
%F FAA_2006_40_2_a3
V. A. Timorin. Diffeomorphisms Taking Lines to Circles, and Quaternionic Hopf Fibrations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 33-43. http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a3/

[1] Lam K. Y., “Some new results in composition of quadratic forms”, Invent. Math., 79 (1985), 467–474 | DOI | MR | Zbl

[2] Khovanskii G. S., Osnovy nomografii, Nauka, M., 1976 | MR

[3] Khovanskii A. G., “Vypryamlenie okruzhnostei”, Sib. matem. zh., 21 (1980), 221–226 | Zbl

[4] Izadi F. A., Rectification of circles, spheres, and classical geometries, PhD thesis, University of Toronto, 2001 | MR

[5] Timorin V. A., “Rectification of circles and quaternions”, Michigan Math. J., 51:1 (2003), 153–167 | DOI | MR | Zbl