Diffeomorphisms Taking Lines to Circles, and Quaternionic Hopf Fibrations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 33-43
Cet article a éte moissonné depuis la source Math-Net.Ru
We list all diffeomorphisms between an open subset of the four-dimensional projective space and an open subset of the four-dimensional sphere that take all line segments to arcs of round circles. These diffeomorphisms are restrictions of quaternionic Hopf fibrations and radial projections from hyperplanes to spheres.
@article{FAA_2006_40_2_a3,
author = {V. A. Timorin},
title = {Diffeomorphisms {Taking} {Lines} to {Circles,} and {Quaternionic} {Hopf} {Fibrations}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {33--43},
year = {2006},
volume = {40},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a3/}
}
V. A. Timorin. Diffeomorphisms Taking Lines to Circles, and Quaternionic Hopf Fibrations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 33-43. http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a3/
[1] Lam K. Y., “Some new results in composition of quadratic forms”, Invent. Math., 79 (1985), 467–474 | DOI | MR | Zbl
[2] Khovanskii G. S., Osnovy nomografii, Nauka, M., 1976 | MR
[3] Khovanskii A. G., “Vypryamlenie okruzhnostei”, Sib. matem. zh., 21 (1980), 221–226 | Zbl
[4] Izadi F. A., Rectification of circles, spheres, and classical geometries, PhD thesis, University of Toronto, 2001 | MR
[5] Timorin V. A., “Rectification of circles and quaternions”, Michigan Math. J., 51:1 (2003), 153–167 | DOI | MR | Zbl