A Criterion for the Existence of Decaying Solutions in the Problem on a Resonator with a Cylindrical Waveguide
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 20-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Helmholtz equation $\Delta u+k^2u=0$ in a domain $\Omega$ with a cylindrical outlet $Q_+=\omega\times\mathbb{R}_+$ to infinity, we construct a fictitious scattering operator $\mathfrak{S}$ that is unitary in $L_2(\omega)$ and establish a bijection between the lineal of decaying solutions of the Dirichlet problem in $\Omega$ and the subspace of eigenfunctions of $\mathfrak{S}$ corresponding to the eigenvalue $1$ and orthogonal to the eigenfunctions with eigenvalues $\lambda_n\le k^2$ of the Dirichlet problem for the Laplace operator on the cross-section $\omega$.
@article{FAA_2006_40_2_a2,
     author = {S. A. Nazarov},
     title = {A {Criterion} for the {Existence} of {Decaying} {Solutions} in the {Problem} on a {Resonator} with a {Cylindrical} {Waveguide}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {20--32},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - A Criterion for the Existence of Decaying Solutions in the Problem on a Resonator with a Cylindrical Waveguide
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 20
EP  - 32
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a2/
LA  - ru
ID  - FAA_2006_40_2_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T A Criterion for the Existence of Decaying Solutions in the Problem on a Resonator with a Cylindrical Waveguide
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 20-32
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a2/
%G ru
%F FAA_2006_40_2_a2
S. A. Nazarov. A Criterion for the Existence of Decaying Solutions in the Problem on a Resonator with a Cylindrical Waveguide. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 20-32. http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a2/

[1] C. Wilcox, Scattering Theory for Diffraction Gratings, Springer-Verlag, Berlin, 1980 | MR

[2] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Differentsialnye uravneniya. Spektralnaya teoriya. Raspoznavanie voln, Problemy matem. fiziki, 13, Izd-vo LGU, L., 1991, 192–244 | MR

[3] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[4] F. Ursell, “Trapping modes in the theory of surface waves”, Proc. Cambridge Philos. Soc., 47 (1951), 347–358 | DOI | MR | Zbl

[5] D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Cambridge Philos. Soc., 49 (1953), 668–684 | DOI | MR | Zbl

[6] D. V. Evans, “Trapped acoustic modes”, IMA J. Appl. Math., 49 (1992), 45–60 | DOI | MR

[7] C. M. Linton, D. V. Evans, “Integral equations for a class of problems containing obstacles in waveguides”, J. Fluid Mech., 245 (1992), 349–365 | DOI | MR | Zbl

[8] A.-S. Bonnet-Bendhia, F. Starling, “Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem”, Math. Methods Appl. Sci., 17:5 (1994), 305–338 | DOI | MR | Zbl

[9] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[10] V. Yu. Gotlib, “O resheniyakh uravneniya Gelmgoltsa, sosredotochennykh vblizi ploskoi periodicheskoi granitsy”, Zap. nauchn. semin. POMI, 250, 1998, 83–96 | MR | Zbl

[11] S. V. Sukhinin, “Volnovodnoe, anomalnoe i shepchuschee svoistva periodicheskoi tsepochki prepyatstvii”, Sib. zhurn. industr. matem., 1:2 (1998), 175–198 | MR | Zbl

[12] I. V. Kamotskii, S. A. Nazarov, “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Matem. zametki, 73:1 (2003), 138–140 | DOI | MR | Zbl

[13] I. V. Kamotskii, S. A. Nazarov, “Anomalii Vuda i poverkhnostnye volny v zadachakh rasseyaniya na periodicheskoi granitse. 1, 2”, Matem. sb., 190:1 (1999), 109–138 | DOI | MR | Zbl

[14] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. semin. POMI, 264, 2000, 66–82 | MR | Zbl

[15] S. A. Nazarov, B. A. Plamenevskii, “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl

[16] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[17] G. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983 | MR | Zbl

[18] M. S. Lifshits, Operatory, kolebaniya, volny (Otkrytye sistemy), Nauka, M., 1966 | MR

[19] V. E. Grikurov, P. Neitaamyaki, B. A. Plamenevskii, E. Kheikkola, “O metode poiska poverkhnostnykh voln v difraktsionnykh reshetkakh”, Dokl. RAN, 385:4 (2002), 465–469 | MR | Zbl

[20] V. E. Grikurov, E. Heikkola, P. Niettaanmäki, B. A. Plamenevskii, “On computation of scattering matrices and on surface waves for diffraction gratings”, Numer. Math., 94 (2003), 269–288 | DOI | MR | Zbl

[21] I. V. Kamotskii, S. A. Nazarov, “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Problemy matem. analiza, 19, Nauchnaya kniga, Novosibirsk, 1999, 105–148