A Sharp Estimate for the Rate of Convergence in Mean of Birkhoff Sums for Some Classes of Periodic Differentiable Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 43-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a badly approximable vector $\alpha$, we obtain a sharp estimate for the rate of convergence in the space $L_p$ ($0$) of the Birkhoff means $\frac1{n}\sum_{s=0}^{n-1} f(x+s\alpha)$ for an absolutely continuous periodic function $f$ and for functions in spaces of Bessel potentials.
Keywords: Birkhoff sum, badly approximable vector, generalized Bessel potential.
@article{FAA_2006_40_1_a3,
     author = {A. V. Rozhdestvenskii},
     title = {A {Sharp} {Estimate} for the {Rate} of {Convergence} in {Mean} of {Birkhoff} {Sums} for {Some} {Classes} of {Periodic} {Differentiable} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a3/}
}
TY  - JOUR
AU  - A. V. Rozhdestvenskii
TI  - A Sharp Estimate for the Rate of Convergence in Mean of Birkhoff Sums for Some Classes of Periodic Differentiable Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 43
EP  - 51
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a3/
LA  - ru
ID  - FAA_2006_40_1_a3
ER  - 
%0 Journal Article
%A A. V. Rozhdestvenskii
%T A Sharp Estimate for the Rate of Convergence in Mean of Birkhoff Sums for Some Classes of Periodic Differentiable Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 43-51
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a3/
%G ru
%F FAA_2006_40_1_a3
A. V. Rozhdestvenskii. A Sharp Estimate for the Rate of Convergence in Mean of Birkhoff Sums for Some Classes of Periodic Differentiable Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a3/

[1] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[2] A. Zigmund, Trigonometricheskie ryady, t. 1, 2, Mir, M., 1965 | MR

[3] N. M. Korobov, Teoretikochislovye metody v priblizhennom analize, Fizmatlit, M., 1963 | MR

[4] P. Liardet, D. Volny, “Sums of continuous and differentiable functions in dynamical systems”, Israel J. Math., 98 (1997), 29–60 | DOI | MR | Zbl

[5] V. M. Shmidt, Diofantovy priblizheniya, Mir, M., 1983 | MR

[6] M. Lerch, “Question 1547”, L'Intermediaire Math., 11 (1904), 144–145

[7] L. Keipers, G. Niderreiter, Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR

[8] A. V. Rozhdestvenskii, “Ob additivnom kogomologicheskom uravnenii i zamene vremeni v lineinom potoke na tore s diofantovym vektorom chastot”, Matem. sb., 195:5 (2004), 115–156 | DOI | MR | Zbl

[9] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[10] S. A. Pichugov, “Posledovatelnosti ogranichennykh po mere operatorov”, Matem. sb., 185:1 (1994), 43–72 | Zbl

[11] S. A. Pichugov, “Otsenki norm operatorov, nepreryvnykh po mere”, Matem. zametki, 50:1 (1991), 146–148 | MR | Zbl