Fredholmness of Pseudodifference Operators in Weighted Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 83-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2006_40_1_a10,
     author = {V. S. Rabinovich and S. Roch},
     title = {Fredholmness of {Pseudodifference} {Operators} in {Weighted} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--86},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a10/}
}
TY  - JOUR
AU  - V. S. Rabinovich
AU  - S. Roch
TI  - Fredholmness of Pseudodifference Operators in Weighted Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 83
EP  - 86
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a10/
LA  - ru
ID  - FAA_2006_40_1_a10
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%A S. Roch
%T Fredholmness of Pseudodifference Operators in Weighted Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 83-86
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a10/
%G ru
%F FAA_2006_40_1_a10
V. S. Rabinovich; S. Roch. Fredholmness of Pseudodifference Operators in Weighted Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 83-86. http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a10/

[1] Agranovich M. S., Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, 1990, 5–129 | MR | Zbl

[2] Grushin V. V., Funkts. analiz i ego pril., 4:3 (1970), 37–50 | MR | Zbl

[3] Deift P., Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach, Courant Lect. Notes in Math., 3, Amer. Math. Soc., Providence, R.I., 2000 | DOI | MR | Zbl

[4] Jirari A., Memoirs Amer. Math. Soc., 542, Providence, R.I., 1995 | Zbl

[5] Taylor M. E., Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981 | MR | Zbl

[6] Teschl G., Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surveys and Monographs, 72, Amer. Math. Soc., Providence, R.I., 1999 | DOI | MR