Fredholmness of Pseudodifference Operators in Weighted Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 83-86
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_2006_40_1_a10,
author = {V. S. Rabinovich and S. Roch},
title = {Fredholmness of {Pseudodifference} {Operators} in {Weighted} {Spaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {83--86},
year = {2006},
volume = {40},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a10/}
}
V. S. Rabinovich; S. Roch. Fredholmness of Pseudodifference Operators in Weighted Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 83-86. http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a10/
[1] Agranovich M. S., Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, 1990, 5–129 | MR | Zbl
[2] Grushin V. V., Funkts. analiz i ego pril., 4:3 (1970), 37–50 | MR | Zbl
[3] Deift P., Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach, Courant Lect. Notes in Math., 3, Amer. Math. Soc., Providence, R.I., 2000 | DOI | MR | Zbl
[4] Jirari A., Memoirs Amer. Math. Soc., 542, Providence, R.I., 1995 | Zbl
[5] Taylor M. E., Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981 | MR | Zbl
[6] Teschl G., Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surveys and Monographs, 72, Amer. Math. Soc., Providence, R.I., 1999 | DOI | MR