Estimates and Spectral Asymptotics for Systems with Multiplicities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 78-80
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider elliptic and hyperbolic systems with diagonalizable principal part. Characteristics are allowed to have variable multiplicities. Assuming that the characteristics are generic, we give estimates for solutions of a hyperbolic Cauchy problem in $L^p$ spaces. The first and second terms of the spectral asymptotics are obtained for the corresponding elliptic system.
Keywords:
system with multiplicities, spectral asymptotics, Fourier integral operator, Sobolev space.
@article{FAA_2005_39_4_a6,
author = {I. V. Kamotskii and M. V. Ruzhansky},
title = {Estimates and {Spectral} {Asymptotics} for {Systems} with {Multiplicities}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {78--80},
year = {2005},
volume = {39},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a6/}
}
I. V. Kamotskii; M. V. Ruzhansky. Estimates and Spectral Asymptotics for Systems with Multiplicities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 78-80. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a6/
[1] Birman M. Sh., Solomyak M. Z., UMN, 42:6(258) (1987), 61–76 | MR | Zbl
[2] Duistermaat J. J., Guillemin V., Invent. Math., 29 (1975), 39–79 | DOI | MR | Zbl
[3] Hörmander L., Acta Math., 121 (1968), 193–218 | DOI | MR | Zbl
[4] Hörmander L., Acta Math., 127 (1971), 79–183 | DOI | MR | Zbl
[5] Ivrii V. Ya., Funkts. analiz i ego pril., 16 (1982), 30–38 | MR | Zbl
[6] Melrose R., Invent. Math., 37 (1976), 165–191 | DOI | MR | Zbl
[7] Rozenblyum G., Zap. nauchn. semin. LOMI, 96, 1980, 255–271 ; 311–312 | MR
[8] Ruzhanskii M. V., UMN, 55 (2000), 99–170 | DOI | MR | Zbl
[9] Seeger A., Sogger C. D., Stein E. M., Ann. of Math., 134 (1991), 231–251 | DOI | MR | Zbl