Restrictions of Quadratic Forms to Lagrangian Planes, Quadratic Matrix Equations, and Gyroscopic Stabilization
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 32-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the symplectic geometry of linear Hamiltonian systems with nondegenerate Hamiltonians. These systems can be reduced to linear second-order differential equations characteristic of linear oscillation theory. This reduction is related to the problem on the signatures of restrictions of quadratic forms to Lagrangian planes. We study vortex symplectic planes invariant with respect to linear Hamiltonian systems. These planes are determined by the solutions of quadratic matrix equations of a special form. New conditions for gyroscopic stabilization are found.
Keywords: Hamiltonian function, symplectic structure, quadratic form, Williamson normal form, vortex plane.
@article{FAA_2005_39_4_a2,
     author = {V. V. Kozlov},
     title = {Restrictions of {Quadratic} {Forms} to {Lagrangian} {Planes,} {Quadratic} {Matrix} {Equations,} and {Gyroscopic} {Stabilization}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {32--47},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a2/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Restrictions of Quadratic Forms to Lagrangian Planes, Quadratic Matrix Equations, and Gyroscopic Stabilization
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 32
EP  - 47
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a2/
LA  - ru
ID  - FAA_2005_39_4_a2
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Restrictions of Quadratic Forms to Lagrangian Planes, Quadratic Matrix Equations, and Gyroscopic Stabilization
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 32-47
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a2/
%G ru
%F FAA_2005_39_4_a2
V. V. Kozlov. Restrictions of Quadratic Forms to Lagrangian Planes, Quadratic Matrix Equations, and Gyroscopic Stabilization. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 32-47. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a2/

[1] Kozlov V. V., Obschaya teoriya vikhrei, Izd. dom «Udmurtskii universitet», Izhevsk, 1998 | MR | Zbl

[2] Williamson J., “On an algebraic problem, concerning the normal forms of linear dynamical systems”, Amer. J. Math., 58:1 (1936), 141–163 | DOI | MR | Zbl

[3] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[4] Kozlov V. V., Karapetyan A. A., “O stepeni ustoichivosti”, Differentsialnye uravneniya, 41:2 (2005), 186–192 | MR | Zbl

[5] Kozlov V. V., “Lineinye sistemy s kvadratichnym integralom”, Prikl. matem. mekh., 56:6 (1992), 900–906 | MR | Zbl

[6] Gelfand S. I., “O chisle reshenii kvadratnogo uravneniya”, Globus. Obschematematicheskii seminar, vyp. 1, MTsNMO, M., 2004, 124–133

[7] Kozlov V. V., “Spektr lineinoi gamiltonovoi sistemy i simplekticheskaya geometriya kompleksnogo prostranstva Artina”, Dokl. RAN, 393:4 (2003), 453–455 | MR