The Index of Vector Fields and Logarithmic Differential Forms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 1-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of logarithmic index of a vector field on a hypersurface and prove that the homological index can be expressed via the logarithmic index. Then both invariants are described in terms of logarithmic differential forms for Saito free divisors, which are hypersurfaces with nonisolated singularities, and all contracting homology groups of the complex of regular holomorphic forms on such a hypersurface are computed. In conclusion, we consider the case of normal hypersurfaces, including the case of an isolated singularity, and describe the contracting homology of the complex of regular meromorphic forms with the help of the residue of logarithmic forms.
Keywords: singularity, vector field, logarithmic differential form, contracting homology, logarithmic index, Saito free divisor.
@article{FAA_2005_39_4_a0,
     author = {A. G. Aleksandrov},
     title = {The {Index} of {Vector} {Fields} and {Logarithmic} {Differential} {Forms}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - The Index of Vector Fields and Logarithmic Differential Forms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 1
EP  - 13
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a0/
LA  - ru
ID  - FAA_2005_39_4_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T The Index of Vector Fields and Logarithmic Differential Forms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 1-13
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a0/
%G ru
%F FAA_2005_39_4_a0
A. G. Aleksandrov. The Index of Vector Fields and Logarithmic Differential Forms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a0/