The Index of Vector Fields and Logarithmic Differential Forms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of logarithmic index of a vector field on a hypersurface and prove that the homological index can be expressed via the logarithmic index. Then both invariants are described in terms of logarithmic differential forms for Saito free divisors, which are hypersurfaces with nonisolated singularities, and all contracting homology groups of the complex of regular holomorphic forms on such a hypersurface are computed. In conclusion, we consider the case of normal hypersurfaces, including the case of an isolated singularity, and describe the contracting homology of the complex of regular meromorphic forms with the help of the residue of logarithmic forms.
Keywords: singularity, vector field, logarithmic differential form, contracting homology, logarithmic index, Saito free divisor.
@article{FAA_2005_39_4_a0,
     author = {A. G. Aleksandrov},
     title = {The {Index} of {Vector} {Fields} and {Logarithmic} {Differential} {Forms}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - The Index of Vector Fields and Logarithmic Differential Forms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 1
EP  - 13
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a0/
LA  - ru
ID  - FAA_2005_39_4_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T The Index of Vector Fields and Logarithmic Differential Forms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 1-13
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a0/
%G ru
%F FAA_2005_39_4_a0
A. G. Aleksandrov. The Index of Vector Fields and Logarithmic Differential Forms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a0/

[1] Aleksandrov A. G., “O komplekse de Rama neizolirovannykh osobennostei”, Funkts. analiz i ego pril., 22:2 (1988), 59–60 | MR

[2] Aleksandrov A. G., “Neizolirovannye osobennosti Saito”, Matem. sb., 137(179):4(12) (1988), 554–567 | MR | Zbl

[3] Aleksandrov A. G., “Nonisolated hypersurface singularities”, Adv. in Soviet Math., Vol. 1, ed. Arnold V. I., Amer. Math. Soc., Providence, RI, 1990, 211–246 | MR

[4] Barlet D., “Le faiseau $\omega_X^\bullet$ sur un espace analytique $X$ de dimension pure”, Lecture Notes in Math., 670, Springer-Verlag, 1978, 187–204 | DOI | MR

[5] Gómez-Mont X., “An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity”, J. Alg. Geom., 7 (1998), 731–752 | MR | Zbl

[6] Giraldo L., Gómez-Mont X., Mardešić P., “On the index of vector fields tangent to hypersurfaces with non-isolated singularities”, J. London Math. Soc. (2), 65:2 (2002), 418–438 | DOI | MR | Zbl

[7] Greuel G.-M., “Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollstandigen Durchschnitten”, Math. Ann., 214:3 (1975), 235–266 | DOI | MR | Zbl

[8] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, t. 2, Mir, M., 1982 | MR

[9] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981

[10] Milnor J., Topology from the differential viewpoint, Princeton Univ. Press, Princeton, NJ, 1997 | MR | Zbl

[11] Reiffen H.-J., Vetter U., “Pfaffsche Formen auf komplexen Räumen”, Math. Ann., 167:4 (1966), 338–350 | DOI | MR | Zbl

[12] Rossi H., “Vector fields on analytic spaces”, Ann. of Math. (2), 78 (1963), 455–467 | DOI | MR | Zbl

[13] Saito K., “On the uniformization of complements of discriminant loci”, Hyperfunctions and Linear partial differential equations, RIMS Kōukyūroku, 287, 1977, 117–137

[14] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 27:2 (1980), 265–291 | MR | Zbl