Very Hyperbolic Polynomials
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 80-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

A real polynomial in one variable is hyperbolic if it has only real roots. A function $f$ is a primitive of order $k$ of a function $g$ if $f^{(k)}=g$. A hyperbolic polynomial is very hyperbolic if it has hyperbolic primitives of all orders. In the paper, we prove a property of the domain of very hyperbolic polynomials and describe this domain in the case of degree $4$.
Keywords: hyperbolic polynomial, very hyperbolic polynomial.
@article{FAA_2005_39_3_a7,
     author = {V. P. Kostov},
     title = {Very {Hyperbolic} {Polynomials}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--84},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a7/}
}
TY  - JOUR
AU  - V. P. Kostov
TI  - Very Hyperbolic Polynomials
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 80
EP  - 84
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a7/
LA  - ru
ID  - FAA_2005_39_3_a7
ER  - 
%0 Journal Article
%A V. P. Kostov
%T Very Hyperbolic Polynomials
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 80-84
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a7/
%G ru
%F FAA_2005_39_3_a7
V. P. Kostov. Very Hyperbolic Polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 80-84. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a7/

[1] Kostov V. P., Serdica Math. J., 25 (1999), 47–70 | MR | Zbl