Very Hyperbolic Polynomials
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 80-84
Cet article a éte moissonné depuis la source Math-Net.Ru
A real polynomial in one variable is hyperbolic if it has only real roots. A function $f$ is a primitive of order $k$ of a function $g$ if $f^{(k)}=g$. A hyperbolic polynomial is very hyperbolic if it has hyperbolic primitives of all orders. In the paper, we prove a property of the domain of very hyperbolic polynomials and describe this domain in the case of degree $4$.
Keywords:
hyperbolic polynomial, very hyperbolic polynomial.
@article{FAA_2005_39_3_a7,
author = {V. P. Kostov},
title = {Very {Hyperbolic} {Polynomials}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {80--84},
year = {2005},
volume = {39},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a7/}
}
V. P. Kostov. Very Hyperbolic Polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 80-84. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a7/