Topologically Free Partial Actions and Faithful Representations of Crossed Products
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 54-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relationship between the topological freeness of partial actions of discrete groups and faithful representations of the corresponding crossed products.
Keywords: crossed product, partial action, topological freeness, faithful representation.
@article{FAA_2005_39_3_a4,
     author = {A. V. Lebedev},
     title = {Topologically {Free} {Partial} {Actions} and {Faithful} {Representations} of {Crossed} {Products}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {54--63},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a4/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Topologically Free Partial Actions and Faithful Representations of Crossed Products
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 54
EP  - 63
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a4/
LA  - ru
ID  - FAA_2005_39_3_a4
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Topologically Free Partial Actions and Faithful Representations of Crossed Products
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 54-63
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a4/
%G ru
%F FAA_2005_39_3_a4
A. V. Lebedev. Topologically Free Partial Actions and Faithful Representations of Crossed Products. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 54-63. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a4/

[1] Exel R., “Circle actions on $C^*$-algebras, partial automorphisms and generalized Pimsner–Voiculescu exact sequence”, J. Funct. Anal., 122 (1994), 361–401 | DOI | MR | Zbl

[2] McClanahan K., “$K$-theory for partial crossed products by discrete groups”, J. Funct. Anal., 130 (1995), 77–117 | DOI | MR | Zbl

[3] Paterson Alan L. T., Groupoids, inverse semigroups, and their operator algebras, Progr. Math., 170, Birkhäuser, 1999 | MR | Zbl

[4] Dixmier J., Les $C^*$-algebres et leurs representations, Gauthier-Villars Editeur, 1969 | MR

[5] Antonevich A., Lebedev A., Functional differential equations: I. $C^*$-theory, Pitman Monographs Surveys Pure Appl. Math., 70, Longman Scientific Technical, Harlow, 1994 | MR | Zbl

[6] Exel R., “Amenability for Fell bundles”, J. Reine Angew. Math., 492 (1997), 41–73 | MR | Zbl

[7] O'Donovan D. P., “Weighted shifts and covariance algebras”, Trans. Amer. Math. Soc., 208 (1975), 1–25 | DOI | MR

[8] Lebedev A. V., O nekotorykh $C^*$-metodakh, primenyaemykh pri issledovanii algebr, assotsiirovannykh s avtomorfizmami i endomorfizmami, Dep. v VINITI, No5351-V 87, 1987

[9] Boyd S., Keswani N., Raeburn I., “Faithful representations of crossed products by endomorphisms”, Proc. Amer. Math. Soc., 118:2 (1993), 427–436 | DOI | MR | Zbl

[10] Adji S., Laca M., Nilsen M., Raeburn I., “Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups”, Proc. Amer. Math. Soc., 122:4 (1994), 1133–1141 | DOI | MR | Zbl

[11] Exel R., Laca M., Quigg J., “Partial dynamical systems and $C^*$-algebras generated by partial isometries”, J. Operator Theory, 47 (2002), 169–186 | MR | Zbl

[12] Lebedev A. V., “Ob obratimosti elementov v $C^*$-algebrakh, porozhdennykh dinamicheskimi sistemami”, UMN, 34:4 (1979), 199–200 | MR | Zbl

[13] Lebedev A. V., Operatory tipa vzveshennogo sdviga, Dis. kand. fiz.-mat. nauk, Minsk, 1980

[14] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[15] Antonevich A., Belousov M., Lebedev A., Functional differential equations: II. $C^*$-applications. Part 1. Equations with continuous coefficients, Pitman Monographs Surveys Pure Appl. Math., 94, Longman, Harlow, 1998 | MR | Zbl

[16] Antonevich A., Belousov M., Lebedev A., Functional differential equations: II. $C^*$-applications. Part 2. Equations with discontinuous coefficients and boundary value problems, Pitman Monographs Surveys Pure Appl. Math., 95, Longman, Harlow, 1998 | MR | Zbl

[17] Karlovich Yu. I., “Lokalno-traektornyi metod issledovaniya obratimosti v $C^*$-algebrakh operatorov s diskretnymi gruppami sdvigov”, DAN SSSR, 299:3 (1988), 546–550 | MR | Zbl

[18] Arveson W. B., “Operator algebras and measure preserving automorphisms”, Acta Math., 118 (1967), 95–109 | DOI | MR | Zbl

[19] Arveson W. B., Josephson K. B., “Operator algebras and measure preserving automorphisms. II”, J. Funct. Anal., 4:1 (1969), 100–134 | DOI | MR

[20] Lebedev A. V., “O rasshirenii operatornykh algebr s pomoschyu izometricheskikh operatorov, porozhdayuschikh endomorfizmy”, UMN, 39:5 (1984), 247–248 | MR | Zbl

[21] Lebedev A. V., “Konstruktsii i ob'ekty, assotsiirovannye s $C^*$-dinamicheskimi sistemami, porozhdennymi endomorfizmami”, Trudy IM NAN Belarusi, 1 (1998), 133–142 | MR | Zbl

[22] Arzumanyan V. A., Vershik A. M., “Faktor-predstavleniya skreschennogo proizvedeniya kommutativnoi $C^*$-algebry i polugruppy ee endomorfizmov”, Dokl. AN SSSR, 238:3 (1978), 513–517 | MR

[23] Arzumanyan V. A., Struktura i predctavleniya involyutivnykh algebr, assotsiirovannykh s polugruppami endomorfizmov, Dis. kand. fiz.-mat. nauk, Leningrad, 1978

[24] Arzumanian V. A., Vershik A. M., “Star algebras associated with endomorphisms”, Operator Algebras and Group Representations, Proc. Int. Conf. (Neptun/Rom., 1980), Vol. I, Monographs Stud. Math., 17, 1984, 17–27 | MR | Zbl

[25] Arzumanyan V. A., “Operatornye algebry, assotsiirovannye s nesingulyarnymi endomorfizmami prostranstv Lebega”, Izv. AN ArmSSR, 20:6 (1986), 596–616 | MR

[26] Exel R., A new look at the crossed-product of a $C^*$-algebra by an endomorphism, , 12 Dec 2000 arXiv: math.OA/0012084 | MR

[27] Exel R., Crossed-products by finite index endomorphisms and KMS states, , 24 May 2001 arXiv: math.OA/0105195 | MR

[28] Exel R., Vershik A., $C^*$-algebras of irreversible dynamical systems, , 19 May 2002 arXiv: math.OA/0203185 | MR