Algebras Generated by Linearly Dependent Elements with Prescribed Spectra
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 14-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider associative algebras presented by a finite set of generators and relations of special form: each generator is annihilated by some polynomial, and the sum of generators is zero. The growth of this algebra in dependence on the degrees of the polynomials annihilating the generators is studied. The tuples of degrees for which the algebras are finite-dimensional, have polynomial growth, or have exponential growth are indicated. To the tuple of degrees, we assign a graph, and the above-mentioned cases correspond to Dynkin diagrams, extended Dynkin diagrams, and the other graphs, respectively. For extended Dynkin diagrams, we indicate the hyperplane in the space of parameters (roots of the polynomials) on which the corresponding algebras satisfy polynomial identities.
Keywords: PI algebra, finitely generated algebra, Dynkin diagram, polynomial growth, deformed preprojective algebra.
@article{FAA_2005_39_3_a1,
     author = {M. A. Vlasenko and A. S. Mellit and Yu. S. Samoilenko},
     title = {Algebras {Generated} by {Linearly} {Dependent} {Elements} with {Prescribed} {Spectra}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {14--27},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a1/}
}
TY  - JOUR
AU  - M. A. Vlasenko
AU  - A. S. Mellit
AU  - Yu. S. Samoilenko
TI  - Algebras Generated by Linearly Dependent Elements with Prescribed Spectra
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 14
EP  - 27
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a1/
LA  - ru
ID  - FAA_2005_39_3_a1
ER  - 
%0 Journal Article
%A M. A. Vlasenko
%A A. S. Mellit
%A Yu. S. Samoilenko
%T Algebras Generated by Linearly Dependent Elements with Prescribed Spectra
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 14-27
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a1/
%G ru
%F FAA_2005_39_3_a1
M. A. Vlasenko; A. S. Mellit; Yu. S. Samoilenko. Algebras Generated by Linearly Dependent Elements with Prescribed Spectra. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 14-27. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a1/

[1] Fulton W., “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc., 37:3 (2000), 209–249 | DOI | MR | Zbl

[2] Klyachko A. A., “Stable bundles, representation theory and Hermitian operators”, Selecta Math., 4 (1998), 419–445 | DOI | MR | Zbl

[3] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 57, 1990, 5–177 | MR

[4] Rowen L. H., Ring theory, Academic Press, 1991 | MR | Zbl

[5] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR

[6] Rabanovich V. I., Samoilenko Yu. S., Strelets A. V., “O tozhdestvakh v algebrakh $Q_{n,\lambda}$, porozhdennykh idempotentami”, Ukr. matem. zh., 53:10 (2001), 1380–1390 | MR

[7] Rabanovich V. I., Samoilenko Yu. S., Strelets A. V., “O tozhdestvakh v algebrakh, porozhdennykh lineino svyazannymi idempotentami”, Ukr. matem. zh., 56:6 (2004), 782–795 | MR | Zbl

[8] Strelets A. V., “On identities in the algebra generated by three partial reflections sum of which is zero”, Methods Funct. Anal. Topol., 10:2 (2004), 86–90 | MR | Zbl

[9] Mellit A. S., “Kogda summa trekh chastichnykh otrazhenii ravna nulyu”, Ukr. matem. zh., 55:9 (2003), 1277–1283 | MR | Zbl

[10] Crawley-Boevey W., Holland M. P., “Noncommutative deformations of Kleinian singularities”, Duke Math. J., 92:3 (1998), 605–635 | DOI | MR | Zbl

[11] Ringel C. M., “The preprojective algebra of a quiver”, Algebras and modules, II, CMS Conf. Proc., Vol. 24, Amer. Math. Soc., Providence, RI, 1998, 467–480 | MR | Zbl

[12] Gelfand I. M., Ponomarev V. A., “Modelnye algebry i predstavleniya grafov”, Funkts. analiz i ego pril., 13:3 (1979), 1–12 | MR

[13] Rabanovich V. I., Samoilenko Yu. S., “Kogda summa idempotentov ili proektorov kratna edinitse”, Funkts. analiz i ego pril., 34:4 (2000), 91–93 | DOI | MR | Zbl

[14] Kruglyak S. A., Rabanovich V. I., Samoilenko Yu. S., “O summakh proektorov”, Funkts. analiz i ego pril., 36:3 (2002), 20–35 | DOI | MR | Zbl

[15] Kruglyak S. A., Roiter A. V., Lokalno-skalyarnye predstavleniya grafov v kategorii gilbertovykh prostranstv, Preprint Instituta matematiki NAN Ukrainy, 2003.4, 2003