Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain results concerning Arnold's problem about a generalization of the Pontryagin–Thom construction in cobordism theory to real algebraic functions. The Pontryagin–Thom construction in the Wells form is transferred to the space of real functions. The relation of the problem with algebraic $K$-theory and the $h$-principle due to Eliashberg and Mishachev is revealed.
Keywords: wrinkle, Pontryagin–Thom construction, $h$-principle.
@article{FAA_2005_39_3_a0,
     author = {P. M. Akhmet'ev and D. Repov\v{s} and M. Cencelj},
     title = {Some {Algebraic} {Properties} of {Cerf} {Diagrams} of {One-Parameter} {Function} {Families}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a0/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - D. Repovš
AU  - M. Cencelj
TI  - Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 1
EP  - 13
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a0/
LA  - ru
ID  - FAA_2005_39_3_a0
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A D. Repovš
%A M. Cencelj
%T Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 1-13
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a0/
%G ru
%F FAA_2005_39_3_a0
P. M. Akhmet'ev; D. Repovš; M. Cencelj. Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a0/

[1] Arnold V. I., “Prostranstva funktsii s umerennymi osobennostyami”, Funkts. analiz i ego pril., 23:3 (1989), 1–10 | DOI | MR

[2] Arnold V. I., Zadachi Arnolda, Fazis, M., 2000 | MR

[3] Akhmetev P. M., “Vlozheniya kompaktov, stabilnye gomotopicheskie gruppy sfer i teoriya osobennostei”, UMN, 55:3 (2000), 3–62 | DOI | MR

[4] Akhmetev P. M., “$K_2$ dlya prosteishikh tselochislennykh gruppovykh kolets i vozmozhnye topologicheskie prilozheniya”, Matem. sb., 194:1 (2003), 23–30 | DOI | MR

[5] Akhmetiev P. M., “Pontrjagin–Thom construction for approximation of mappings by embeddings”, Topology Appl., 140:2–3 (2004), 133–149 | DOI | MR | Zbl

[6] Cerf J., “La stratification naturelle des espaces des fonctions differentiables reelles et le theoreme de la pseudoisotopie”, Publ. Math. IHES, 39 (1970), 5–173 | DOI | MR | Zbl

[7] Eliashberg Y., Mishachev N. M., “Wrinkling of smooth mappings and its applications. I”, Invent. Math., 130 (1997), 345–369 | DOI | MR | Zbl

[8] Eliashberg Y., Mishachev N. M., “Wrinkling of smooth mappings. II. Wrinkling of embeddings and K. Igusa's theorem”, Topology, 39:4 (2000), 711–732 | DOI | MR | Zbl

[9] Eliashberg Y., Mishachev N. M., Introduction to the $h$-principle, Grad. Stud. Math., 48, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl

[10] Hatcher A., Wagoner J., Pseudo-isotopy of compact manifolds, Asterisque, 6, Soc. Math. France, Paris, 1973 | MR

[11] Igusa K., “On the homotopy type of the space of generalized Morse functions”, Topology, 23:2 (1984), 245–256 | DOI | MR | Zbl

[12] Igusa K., “Higher singularities are unnecessary”, Ann. of Math., 119:1 (1984), 1–58 | DOI | MR | Zbl

[13] Laudenbach F., “Formes différentielles de degré 1 fermées non singulières: classes d'homotopie de leurs noyaux”, Comment. Math. Helv., 51:3 (1976), 447–464 | DOI | MR | Zbl

[14] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR

[15] Vasilev V. A., “Topologiya prostranstv funktsii bez slozhnykh osobennostei”, Funkts. analiz i ego pril., 23:4 (1989), 24–36 | MR

[16] Pontryagin L. S., Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopii, 2-e izd., Nauka, M., 1976 | MR | Zbl

[17] Rimanyi R., Szucs A., “Pontrjagin–Thom type construction for maps with singularities”, Topology, 37:6 (1998), 1177–1191 | DOI | MR | Zbl

[18] Syuch A., “Analog prostranstva Toma dlya otobrazhenii s osobennostyu tipa $\Sigma^1$”, Matem. sb., 108(150):3 (1979), 438–456

[19] Thom R., “Quelques propriétés globales des variétés différentiables”, Comment. Math. Helv., 28 (1954), 17–86 ; Tom R., “Nekotorye svoistva v tselom differentsiruemykh mnogoobrazii”, Rassloennye prostranstva, IL, M., 1958, 291–351 | DOI | MR | Zbl

[20] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl