Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2005_39_3_a0, author = {P. M. Akhmet'ev and D. Repov\v{s} and M. Cencelj}, title = {Some {Algebraic} {Properties} of {Cerf} {Diagrams} of {One-Parameter} {Function} {Families}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--13}, publisher = {mathdoc}, volume = {39}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a0/} }
TY - JOUR AU - P. M. Akhmet'ev AU - D. Repovš AU - M. Cencelj TI - Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2005 SP - 1 EP - 13 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a0/ LA - ru ID - FAA_2005_39_3_a0 ER -
%0 Journal Article %A P. M. Akhmet'ev %A D. Repovš %A M. Cencelj %T Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families %J Funkcionalʹnyj analiz i ego priloženiâ %D 2005 %P 1-13 %V 39 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a0/ %G ru %F FAA_2005_39_3_a0
P. M. Akhmet'ev; D. Repovš; M. Cencelj. Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a0/
[1] Arnold V. I., “Prostranstva funktsii s umerennymi osobennostyami”, Funkts. analiz i ego pril., 23:3 (1989), 1–10 | DOI | MR
[2] Arnold V. I., Zadachi Arnolda, Fazis, M., 2000 | MR
[3] Akhmetev P. M., “Vlozheniya kompaktov, stabilnye gomotopicheskie gruppy sfer i teoriya osobennostei”, UMN, 55:3 (2000), 3–62 | DOI | MR
[4] Akhmetev P. M., “$K_2$ dlya prosteishikh tselochislennykh gruppovykh kolets i vozmozhnye topologicheskie prilozheniya”, Matem. sb., 194:1 (2003), 23–30 | DOI | MR
[5] Akhmetiev P. M., “Pontrjagin–Thom construction for approximation of mappings by embeddings”, Topology Appl., 140:2–3 (2004), 133–149 | DOI | MR | Zbl
[6] Cerf J., “La stratification naturelle des espaces des fonctions differentiables reelles et le theoreme de la pseudoisotopie”, Publ. Math. IHES, 39 (1970), 5–173 | DOI | MR | Zbl
[7] Eliashberg Y., Mishachev N. M., “Wrinkling of smooth mappings and its applications. I”, Invent. Math., 130 (1997), 345–369 | DOI | MR | Zbl
[8] Eliashberg Y., Mishachev N. M., “Wrinkling of smooth mappings. II. Wrinkling of embeddings and K. Igusa's theorem”, Topology, 39:4 (2000), 711–732 | DOI | MR | Zbl
[9] Eliashberg Y., Mishachev N. M., Introduction to the $h$-principle, Grad. Stud. Math., 48, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl
[10] Hatcher A., Wagoner J., Pseudo-isotopy of compact manifolds, Asterisque, 6, Soc. Math. France, Paris, 1973 | MR
[11] Igusa K., “On the homotopy type of the space of generalized Morse functions”, Topology, 23:2 (1984), 245–256 | DOI | MR | Zbl
[12] Igusa K., “Higher singularities are unnecessary”, Ann. of Math., 119:1 (1984), 1–58 | DOI | MR | Zbl
[13] Laudenbach F., “Formes différentielles de degré 1 fermées non singulières: classes d'homotopie de leurs noyaux”, Comment. Math. Helv., 51:3 (1976), 447–464 | DOI | MR | Zbl
[14] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR
[15] Vasilev V. A., “Topologiya prostranstv funktsii bez slozhnykh osobennostei”, Funkts. analiz i ego pril., 23:4 (1989), 24–36 | MR
[16] Pontryagin L. S., Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopii, 2-e izd., Nauka, M., 1976 | MR | Zbl
[17] Rimanyi R., Szucs A., “Pontrjagin–Thom type construction for maps with singularities”, Topology, 37:6 (1998), 1177–1191 | DOI | MR | Zbl
[18] Syuch A., “Analog prostranstva Toma dlya otobrazhenii s osobennostyu tipa $\Sigma^1$”, Matem. sb., 108(150):3 (1979), 438–456
[19] Thom R., “Quelques propriétés globales des variétés différentiables”, Comment. Math. Helv., 28 (1954), 17–86 ; Tom R., “Nekotorye svoistva v tselom differentsiruemykh mnogoobrazii”, Rassloennye prostranstva, IL, M., 1958, 291–351 | DOI | MR | Zbl
[20] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl