Some Continuous Analogs of the Expansion in Jacobi Polynomials and Vector-Valued Orthogonal Bases
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 31-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the spectral decomposition of the hypergeometric differential operator on the contour $\operatorname{Re}z=1/2$. (The multiplicity of the spectrum of this operator is $2$.) As a result, we obtain a new integral transform different from the Jacobi (or Olevskii) transform. We also construct an ${}_3F_2$-orthogonal basis in a space of functions ranging in $\mathbb{C}^2$. The basis lies in the analytic continuation of continuous dual Hahn polynomials with respect to the index $n$ of a polynomial.
Keywords: hypergeometric differential operator
Mots-clés : spectral decomposition, Jacobi transform, Hahn polynomial.
@article{FAA_2005_39_2_a2,
     author = {Yu. A. Neretin},
     title = {Some {Continuous} {Analogs} of the {Expansion} in {Jacobi} {Polynomials} and {Vector-Valued} {Orthogonal} {Bases}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--46},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a2/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Some Continuous Analogs of the Expansion in Jacobi Polynomials and Vector-Valued Orthogonal Bases
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 31
EP  - 46
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a2/
LA  - ru
ID  - FAA_2005_39_2_a2
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Some Continuous Analogs of the Expansion in Jacobi Polynomials and Vector-Valued Orthogonal Bases
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 31-46
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a2/
%G ru
%F FAA_2005_39_2_a2
Yu. A. Neretin. Some Continuous Analogs of the Expansion in Jacobi Polynomials and Vector-Valued Orthogonal Bases. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 31-46. http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a2/

[1] Andrews G. E., Askey R., Roy R., Special functions, Cambridge Univ. Press, 1999 | MR | Zbl

[2] Askey R., “An integral of Ramanujan and orthogonal polynomials”, J. Indian Math. Soc. (N.S.), 51 (1987), 27–36 | MR | Zbl

[3] Borodin A., Olshanski G., Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, arXiv.org: math.RT/0109194 | MR

[4] Borodin A., Olshanski G., Random partitions and the Gamma kernel, arXiv.org: math-ph/0305043 | MR

[5] Dunford N., Schwartz J. T., Linear operators, vol. 2, Wiley Sons, 1963 ; Danford M., Shvarts Dzh., Lineinye operatory, t. 2, Mir, M., 1966 | Zbl

[6] Grunbaum F. A., Pacharoni I., Tirao J., “Matrix valued spherical functions associated to the complex projective plane”, J. Funct. Anal., 188:2 (2002), 350–441 | DOI | MR

[7] Erdelyi A., Magnus W., Oberhetinger F., Tricomi F., Higher transcendental functions, vol. 1, 2, McGray–Hill, 1953 ; Erdei A., Magnus V., Oberkhetinger F., Trikomi F., Vysshie transtsendentnye funktsii, Nauka, M., 1966 | MR

[8] Flensted-Jensen M., Koornwinder T., “The convolution structure for Jacobi function expansions”, Ark. Math., 11 (1973), 245–262 | DOI | MR | Zbl

[9] Groenevelt W., The Wilson function transform, arXiv.org: math.CA/0306424 | MR

[10] Kamke E., Differentialgleichungen. I. Gevöhnliche Differentialgleichungen, 6 ed., Leipzig, 1959 ; Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971 | MR | MR

[11] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report no. 94-05 , Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1994 http://aw.twi.tudelft.nl/~koekoek/askey.html

[12] Koornwinder T. H., “A new proof of a Paley–Wiener theorem for Jacobi transform”, Ark. Math., 13 (1975), 145–159 | DOI | MR | Zbl

[13] Koornwinder T. H., “Jacobi functions and analysis on noncompact symmetric spaces”, Special functions: group theoretical aspects and applications, eds. Askey R., Koornwinder T., Reidel, Dodrecht–Boston, 1984, 1–85 | MR | Zbl

[14] Lesky P. A., “Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen”, Z. Angew. Math. Mech., 76:3 (1996), 181–184 | DOI | MR | Zbl

[15] Lesky P. A., “Unendliche und endliche Orthogonalsysteme von continuous Hahnpolynomen”, Results Math., 31:1–2 (1997), 127–135 | DOI | MR | Zbl

[16] Lesky P. A., Waibel B.-M., “Orthogonalitat von Racahpolynomen und Wilsonpolynomen”, Results Math., 35:1–2 (1999), 119–133 | DOI | MR | Zbl

[17] Molchanov V. F., “Tenzornye proizvedeniya unitarnykh predstavlenii trekhmernoi gruppy Lorentsa”, Izv. AN SSSR, ser. mat., 43 (1979), 860–891 | MR | Zbl

[18] Molchanov V. F., “Formula Plansherelya dlya psevdorimanovykh simmetricheskikh prostranstv ranga 1”, DAN SSSR, 290:3 (1986), 545–549 | MR

[19] Molchanov V. F., “Garmonicheskii analiz na odnorodnykh prostranstvakh”, Nekommutativnyi garmonicheskii analiz-II, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 59, VINITI, M., 1990, 5–144 | MR

[20] Neretin Yu. A., “Indeksnoe gipergeometricheskoe preobrazovanie i imitatsiya analiza yader Berezina na giperbolicheskikh prostranstvakh”, Matem. sb., 192:3 (2001), 83–114 ; arXiv.org: math/0104035 | DOI | MR | Zbl

[21] Neretin Yu. A., “Beta-integraly i konechnye ortogonalnye sistemy mnogochlenov Vilsona”, Matem. sb., 193:7 (2002), 131–148 | DOI | MR | Zbl

[22] Neretin Yu. A., Perturbations of some classical hypergeometric orthogonal systems, arXiv.org: math/a0309445 | MR

[23] Olevskii M. N., “O predstavlenii proizvolnoi funktsii v vide integrala s yadrom, yavlyayuschimsya gipergeometricheskoi funktsiei”, DAN SSSR, 69:1 (1949), 11–14 | MR | Zbl

[24] Peetre J., “Correspondence principle for the quantized annulus, Romanovski polynomials, and Morse potential”, J. Funct. Anal., 117:2 (1993), 377–400 | DOI | MR | Zbl

[25] Prudnikov A. M., Brychkov Yu. A., Marichev O. I., Integraly i ryady, t. 1–3, Nauka, M., 1981, 1983, 1986 | MR | Zbl

[26] Pukanszky L., “On the Kronecker products of irreducible unitary representations of the $2\times2$ real unimodular group”, Trans. Amer. Math. Soc., 100 (1961), 116–152 | DOI | MR | Zbl

[27] Romanovski V. I., “Sur quelques classes nouwels of polynomes orthogonaux”, C. R. Acad. Sci. Paris, 188 (1929), 1023–1025 | Zbl

[28] Rosengren H., “Multilinear Hankel forms of higher order and orthogonal polynomials”, Math. Scand., 82:1 (1998), 53–88 | DOI | MR | Zbl

[29] Rosengren H., “Multivariable orthogonal polynomials and coupling coefficients for discrete series representations”, SIAM J. Math. Anal., 30 (1999), 233–272 | DOI | MR | Zbl

[30] Tirao J. A., “The matrix-valued hypergeometric equation”, Proc. Natl. Acad. Sci. USA, 100:14 (2003), 8138–8141 | DOI | MR | Zbl

[31] Titchmarsh E. C., Eigenfunction expansions with second-order differential operators, v. 1, Clarendon Press, Oxford, 1946 ; Titchmarsh E., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. 1, IL, M., 1960 | MR | Zbl

[32] Vilenkin N. Ya., Klimyk A. U., Representations of Lie groups and special functions, vol. 1, 2, Kluwer, 1991 | MR | Zbl

[33] Weyl H., “Uber gewonliche lineare Differentialgleichungen mis singularen Stellen und ihre Eigenfunktionen (2 Note)”, Nachr. Konig. Gess. Wissen. Göttingen. Math.-Phys., 1910, 442–467 ; Reprinted in Weyl H., Gessamelte Abhandlungen, Bd. 1, Springer-Verlag, 1968, 222–247 | Zbl | MR

[34] Zhang Gen Kai, “Tensor products of weighted Bergman spaces and invariant Ha-plitz operators”, Math. Scand., 71:1 (1992), 85–95 | DOI | MR | Zbl