A Generalization of the Euler Gamma Function
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 87-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a generalized Euler gamma function $\Gamma_\beta(z)$, where the product is taken over powers of integers rather than integers themselves. Studying the associated spectral functions and in particular the zeta function, we obtain the main properties of $\Gamma_\beta(z)$ and its asymptotic expansion for large values of the argument.
Keywords: Euler gamma function, spectral function, asymptotic expansion.
@article{FAA_2005_39_2_a10,
     author = {M. Spreafico},
     title = {A {Generalization} of the {Euler} {Gamma} {Function}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--91},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a10/}
}
TY  - JOUR
AU  - M. Spreafico
TI  - A Generalization of the Euler Gamma Function
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 87
EP  - 91
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a10/
LA  - ru
ID  - FAA_2005_39_2_a10
ER  - 
%0 Journal Article
%A M. Spreafico
%T A Generalization of the Euler Gamma Function
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 87-91
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a10/
%G ru
%F FAA_2005_39_2_a10
M. Spreafico. A Generalization of the Euler Gamma Function. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 87-91. http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a10/

[1] Choi J., Quine J. R., Rocky Mountain J. Math., 26 (1996), 719–729 | DOI | MR | Zbl

[2] Gilkey P. B., “Invariance theorems, the heat equation, and the Atiyah–Singer index theorem”, Studies in Adv. Math., CRC Press, 1995 | MR | Zbl

[3] Morpurgo C., Duke Math. J., 114 (2002), 477–573 | DOI | MR

[4] Mulholland H. P., Proc. Cambridge Phil. Soc., 24 (1928), 280–289 | DOI | Zbl

[5] Sarnak P., Comm. Math. Phys., 110 (1987), 113–120 | DOI | MR | Zbl

[6] Schuster R., Z. Anal. Anwendungen, 11 (1992), 229–236 | DOI | MR | Zbl

[7] Spreafico M., Rocky Mountain J. Math., 33 (2003), 1499–1512 | DOI | MR | Zbl

[8] Vardi I., SIAM J. Math. Anal., 19 (1988), 493–507 | DOI | MR | Zbl

[9] Voros A., Comm. Math. Phys., 110 (1987), 439–465 | DOI | MR | Zbl