Locally Scalar Graph Representations in the Category of Hilbert Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 13-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The condition of being locally scalar is imposed on graph (or quiver) representations in the category of Hilbert spaces. Under this condition, reflection and Coxeter functors are constructed in categories of such representations and used to prove an analog of the Gabriel theorem.
Keywords: quiver (graph) representation, unitary equivalence, Hilbert space, Coxeter functor, locally scalar representation, reflection.
Mots-clés : Dynkin graph
@article{FAA_2005_39_2_a1,
     author = {S. A. Kruglyak and A. V. Roiter},
     title = {Locally {Scalar} {Graph} {Representations} in the {Category} of {Hilbert} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {13--30},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a1/}
}
TY  - JOUR
AU  - S. A. Kruglyak
AU  - A. V. Roiter
TI  - Locally Scalar Graph Representations in the Category of Hilbert Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 13
EP  - 30
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a1/
LA  - ru
ID  - FAA_2005_39_2_a1
ER  - 
%0 Journal Article
%A S. A. Kruglyak
%A A. V. Roiter
%T Locally Scalar Graph Representations in the Category of Hilbert Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 13-30
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a1/
%G ru
%F FAA_2005_39_2_a1
S. A. Kruglyak; A. V. Roiter. Locally Scalar Graph Representations in the Category of Hilbert Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 13-30. http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a1/

[1] Bernshtein I. N., Gelfand I. M., Ponomarev V. A., “Funktory Kokstera i teorema Gabrielya”, UMN, 28:2 (1973), 19–33 | MR

[2] Gabriel P., “Unzerlegbare Darstellungen I”, Manuscripta Math., 6 (1972), 71–103 | DOI | MR | Zbl

[3] Nazarova L. A., “Predstavleniya chetveriady”, Izv. AN SSSR, 31:6 (1967), 1361–1378 | MR | Zbl

[4] Gelfand I. M., Ponomarev V. A., “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space”, Hilbert space operators and operator algebras, Proc. Internat. Conf. (Tihany, Hungary, 1970), Colloq. Math. Soc. Janos Bolyai, 5, 1972 | MR | Zbl

[5] Kruglyak S. A., “Predstavleniya algebr, kvadrat radikala kotorykh raven nulyu”, Zap. nauch. seminarov LOMI, 28, 1972, 60–68 | MR | Zbl

[6] Nazarova L. A., “Predstavleniya kolchanov beskonechnogo tipa”, Izv. AN SSSR, ser. matem., 37 (1973), 752–791 | MR | Zbl

[7] Donovan P., Freislich M. R., “The representation theory of finite graphs and associated algebras”, Carleton Math. Lect. Notes, 5, 1973, 1–119 | DOI | MR

[8] Kac V. G., “Some remarks on representations of quivers and infinite root systems”, Lect. Notes of Math., 832, 1980, 311–332 | DOI | MR

[9] Kac V. G., “Infinite root systems, representations of graphs and invariant theory, II”, J. Algebra, 78 (1982), 141–162 | DOI | MR | Zbl

[10] Gabriel P., Roiter A. V., Representations of Finite-Dimensional Algebras, Springer-Verlag, 1997 | MR

[11] Kruglyak S. A., Samoilenko Yu. S., “Ob unitarnoi ekvivalentnosti naborov samosopryazhennykh operatorov”, Funkts. analiz i ego pril., 14:1 (1980), 60–62 | MR | Zbl

[12] Kruglyak S. A., “Predstavleniya svobodnykh involyutivnykh kolchanov”, Predstavleniya i kvadratichnye formy, Izd. In-ta matematiki AN USSR, Kiev, 1979, 149–151 | MR

[13] Sergeichuk V. V., “Unitary and Euclidean representations of a quiver”, Linear Algebra Appl., 278 (1998), 37–62 | DOI | MR | Zbl

[14] Ostrovskyi V., Samoilenko Yu., “Introduction to the Theory of Representations of Finitely Presented $*$-algebras. I. Representations by bounded operators”, Rev. Math. Math. Phys., 11 (1999), 1–261 | DOI | MR | Zbl

[15] Roiter A. V., “Boksy s involyutsiei”, Predstavleniya i kvadratichnye formy, Kiev, 1979, 124–126 | MR | Zbl

[16] Rabanovich V. I., Samoilenko Yu. S., “Kogda summa idempotentov ili proektorov kratna edinitse”, Funkts. analiz i ego pril., 34:4 (2000), 91–93 | DOI | MR | Zbl

[17] Kruglyak S. A., Rabanovich V. I., Samoilenko Yu. S., “O summakh proektorov”, Funkts. analiz i ego pril., 36:3 (2002), 20–35 | DOI | MR | Zbl

[18] Kruglyak S. A., “Funktory Kokstera dlya odnogo klassa $*$-kolchanov”, Ukr. matem. zh., 54:6 (2002), 789–797 | MR | Zbl

[19] Kruglyak S. A., “Coxeter functors for a certain class of $*$-quivers and $*$-algebras”, Methods of Functional Analysis and Topology, 8:4 (2002), 49–57 | MR | Zbl

[20] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[21] Redchuk I. K., Roiter A. V., “Singulyarnye lokalno-skalyarnye predstavleniya kolchanov v gilbertovykh prostranstvakh i razdelyayuschie funktsii”, Ukr. matem. zh., 56:6 (2004), 796–809 | MR | Zbl