On the Approximation to Solutions of Operator Equations by the Least Squares Method
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation $Au=f$, where $A$ is a linear operator with compact inverse $A^{-1}$ in a separable Hilbert space $\mathfrak{H}$. For the approximate solution $u_n$ of this equation by the least squares method in a coordinate system $\{e_k\}_{k\in\mathbb{N}}$ that is an orthonormal basis of eigenvectors of a self-adjoint operator $B$ similar to $A$ ($\mathcal{D}(B)=\mathcal{D}(A)$), we give a priori estimates for the asymptotic behavior of the expressions $r_n=\|u_n-u\|$ and $R_n=\|Au_n-f\|$ as $n\to\infty$. A relationship between the order of smallness of these expressions and the degree of smoothness of $u$ with respect to the operator $B$ is established.
Keywords: Hilbert space, operator equation, similar operator, approximate solution, least squares method, coordinate system, a priori estimate, closed operator, smooth vector, analytic vector, entire vector, entire vector of exponential type.
@article{FAA_2005_39_1_a7,
     author = {M. L. Gorbachuk},
     title = {On the {Approximation} to {Solutions} of {Operator} {Equations} by the {Least} {Squares} {Method}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a7/}
}
TY  - JOUR
AU  - M. L. Gorbachuk
TI  - On the Approximation to Solutions of Operator Equations by the Least Squares Method
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 85
EP  - 90
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a7/
LA  - ru
ID  - FAA_2005_39_1_a7
ER  - 
%0 Journal Article
%A M. L. Gorbachuk
%T On the Approximation to Solutions of Operator Equations by the Least Squares Method
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 85-90
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a7/
%G ru
%F FAA_2005_39_1_a7
M. L. Gorbachuk. On the Approximation to Solutions of Operator Equations by the Least Squares Method. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a7/

[1] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[2] Krylov N. M., Izbrannye trudy, v 3-kh t., t. 3, Izd-vo AN USSR, Kiev, 1961 | MR

[3] Luchka A. Yu., Luchka T. F., Vozniknovenie i razvitie pryamykh metodov matematicheskoi fiziki, Naukova dumka, Kiev, 1985

[4] Dzhishkariani A. V., Zh. vychisl. matem. i matem. fiz., 8:5 (1968), 1110–1116 | MR

[5] Gorbachuk M. L., Gorbachuk V. I., UMN, 48:4 (1993), 180

[6] Gorbachuk M. L., Funkts. analiz i ego pril., 36:1 (2002), 75–78 | DOI | MR | Zbl

[7] Nelson E., Ann. Math., 70:3 (1959), 572–615 | DOI | MR | Zbl

[8] Goodman R., Trans. Amer. Math. Soc., 143 (1969), 55–76 | DOI | MR | Zbl

[9] Radyno Ya. V., Dokl. AN BSSR, 27:9 (1983), 791–793 | MR | Zbl

[10] Lions J. L., Magenes E., Problèmes aux limites non homogènes et applications, Vol. 3, Dunod, Paris, 1970 | MR | Zbl