Interpolation Orbits in Couples of Lebesgue Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 56-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with interpolation orbits for linear operators acting from an arbitrary couple $\{L_{p_0}(U_0),L_{p_1}(U_1)\}$ of weighted $L_p$ spaces into an arbitrary couple $\{L_{q_0}(V_0),L_{q_1}(V_1)\}$ of such spaces, where $1\le p_0,p_1,q_0, q_1\le\infty$. Here $L_p(U)$ is the space of measurable functions $f$ on a measure space such that $fU\in L_p$, equipped with the norm $\|f\|_{L_p(U)}=\|fU\|_{L_p}$. The paper describes the orbits of arbitrary elements $a\in L_{p_0}(U_0)+L_{p_1}(U_1)$. It contains proofs of the results announced in C. R. Acad. Sci. Paris, Ser. I, 334, 881–884 (2002).
Keywords: space of measurable functions
Mots-clés : interpolation space, interpolation orbit.
@article{FAA_2005_39_1_a4,
     author = {V. I. Ovchinnikov},
     title = {Interpolation {Orbits} in {Couples} of {Lebesgue} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--68},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a4/}
}
TY  - JOUR
AU  - V. I. Ovchinnikov
TI  - Interpolation Orbits in Couples of Lebesgue Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 56
EP  - 68
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a4/
LA  - ru
ID  - FAA_2005_39_1_a4
ER  - 
%0 Journal Article
%A V. I. Ovchinnikov
%T Interpolation Orbits in Couples of Lebesgue Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 56-68
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a4/
%G ru
%F FAA_2005_39_1_a4
V. I. Ovchinnikov. Interpolation Orbits in Couples of Lebesgue Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 56-68. http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a4/

[1] Bennett G., “Inclusion mappings between $l_p$ spaces”, J. Funct. Anal., 13 (1973), 20–27 | DOI | MR | Zbl

[2] Brudnyi Ju. A., Krugliak N. Ya., Interpolation Functors and Interpolation Spaces, I, North Holland, Amsterdam, 1991 | MR | Zbl

[3] Brudnyi Ju. A., Shteinberg A., “Calderon couples of Lipschitz spaces”, J. Funct. Anal., 131 (1995), 459–498 | DOI | MR | Zbl

[4] Dmitriev V. I., “Ob interpolyatsii operatorov v prostranstvakh $L_p$”, DAN SSSR, 260 (1981), 1051–1054 | MR | Zbl

[5] Janson S., “Minimal and maximal methods in interpolation”, J. Funct. Anal., 44 (1981), 50–73 | DOI | MR | Zbl

[6] Lions J.-L., Peetre J., “Sur une classe d'espaces d'interpolation”, Inst. Hautes Études Sci. Publ. Math., 19 (1964), 5–68 | DOI | MR | Zbl

[7] Lozanovskii G. Ya., “O nekotorykh banakhovykh ctrukturakh, II”, Sib. matem. zh., 12 (1971), 562–567 | MR | Zbl

[8] Ovchinnikov V. I., “Tochnaya interpolyatsionnaya teorema v prostranstvakh $L_p$”, DAN SSSR, 272 (1983), 300–303 | MR | Zbl

[9] Ovchinnikov V. I., “Description of orbits”, Israel Math. Conf. Proc., Vol. 5, 1992, 291–292 | MR

[10] Ovchinnikov V. I., “On the description of interpolation orbits in couples of $L_p$ spaces, when they are not described by the $K$-method”, Israel Math. Conf. Proc., Vol. 5, 1992, 187–206 | MR | Zbl

[11] Ovchinnikov V. I., “The method of orbits in interpolation theory”, Math. Rep., 1, part 2 (1984), 349–516 | MR

[12] Ovchinnikov V. I., “Interpolation orbits in couples of $L_p$ spaces”, C. R. Acad. Sci. Paris, Ser. I, 334 (2002), 881–884 | DOI | MR | Zbl

[13] Sparr G., “Interpolation des espaces $L_w^p$”, C. R. Acad. Sci. Paris, Ser. A–B, 278 (1974), 491–492 | MR | Zbl

[14] Sparr G., “Interpolation of weighted $L_p$ spaces”, Studia Math., 62 (1978), 229–271 | DOI | MR | Zbl