Nonremovable Zero Lyapunov Exponents
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 27-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Skew products over a Bernoulli shift with a circle fiber are studied. We prove that in the space of such products there exists a nonempty open set of mappings each of which possesses an invariant ergodic measure with one of the Lyapunov exponents equal to zero. The conjecture that the space of $C^2$-diffeomorphisms of the $3$-dimensional torus into itself has a similar property is discussed.
Keywords: Lyapunov exponent, partially hyperbolic system, nonuniform hyperbolicity, dynamical system, skew product, Bernoulli diffeomorphism.
@article{FAA_2005_39_1_a2,
     author = {A. S. Gorodetski and Yu. S. Ilyashenko and V. A. Kleptsyn and M. B. Nalsky},
     title = {Nonremovable {Zero} {Lyapunov} {Exponents}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a2/}
}
TY  - JOUR
AU  - A. S. Gorodetski
AU  - Yu. S. Ilyashenko
AU  - V. A. Kleptsyn
AU  - M. B. Nalsky
TI  - Nonremovable Zero Lyapunov Exponents
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 27
EP  - 38
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a2/
LA  - ru
ID  - FAA_2005_39_1_a2
ER  - 
%0 Journal Article
%A A. S. Gorodetski
%A Yu. S. Ilyashenko
%A V. A. Kleptsyn
%A M. B. Nalsky
%T Nonremovable Zero Lyapunov Exponents
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 27-38
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a2/
%G ru
%F FAA_2005_39_1_a2
A. S. Gorodetski; Yu. S. Ilyashenko; V. A. Kleptsyn; M. B. Nalsky. Nonremovable Zero Lyapunov Exponents. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a2/

[1] Abraham R., Smale S., “Nongenericity of $\Omega$-stability”, Global Analysis, Proc. Sympos. Pure Math., Vol. XIV (Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 5–8 | DOI | MR

[2] Pesin Ya. B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (196) (1977), 55–112 | MR | Zbl

[3] Bochi J., “Genericity of zero Lyapunov exponents”, Ergodic Theory Dynam. Systems, 22:6 (2002), 1667–1696 | DOI | MR | Zbl

[4] Bochi J., Viana M., “Uniform (projective) hyperbolicity or no hyperbolicity: a dichotomy for generic conservative maps”, Ann. Inst. H. Poincare Anal. Non Liniaire, 19:1 (2002), 113–123 | DOI | MR | Zbl

[5] Baraviera A., Bonatti C., “Removing zero Lyapunov exponents”, Ergodic Theory Dynam. Systems, 23 (2003), 1655–1670 | DOI | MR | Zbl

[6] Shub M., Wilkinson A., “Pathological foliations and removable zero exponents”, Invent. Math., 139 (2000), 495–508 | DOI | MR | Zbl

[7] Dolgopyat D., Pesin Y., “Every compact manifold carries a completely hyperbolic diffeomorphism”, Ergodic Theory Dynam. Systems, 22:2 (2002), 409–435 | DOI | MR | Zbl

[8] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977 | DOI | MR | Zbl

[9] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funkts. analiz i ego pril., 33:2 (1999), 16–30 | DOI | MR

[10] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye svoistva kosykh proizvedenii nad podkovoi i solenoidom”, Trudy MIRAN, 231, 2000, 6–118

[11] Gorodetskii A. S., Minimalnye attraktory i chastichno giperbolicheskie invariantnye mnozhestva dinamicheskikh sistem, Diss. k.f.-m.n., MGU im. Lomonosova, mekh.-mat. fakultet, 2001

[12] Kleptsyn V. A., Nalskii M. B., “Sblizhenie orbit v sluchainykh dinamicheskikh sistemakh na okruzhnosti”, Funkts. analiz i ego pril., 38:4 (2004), 36–54 | DOI | MR | Zbl

[13] Kolmogorov A. N., Fomin S. V., Teoriya funktsii i funktsionalnogo analiza, Nauka, M., 1964 | MR

[14] Ilyashenko Yu., Li W., Nonlocal bifurcations, Amer. Math. Soc., Providence, R.I., 1999 | MR

[15] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, 1999

[16] Katok A. B., Stepin A. M., “Ob approksimatsiyakh ergodicheskikh dinamicheskikh sistem periodicheskimi preobrazovaniyami”, DAN SSSR, 171 (1966), 1268–1271 | MR | Zbl

[17] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (137) (1967), 81–106 | MR | Zbl