Nonremovable Zero Lyapunov Exponents
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 27-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Skew products over a Bernoulli shift with a circle fiber are studied. We prove that in the space of such products there exists a nonempty open set of mappings each of which possesses an invariant ergodic measure with one of the Lyapunov exponents equal to zero. The conjecture that the space of $C^2$-diffeomorphisms of the $3$-dimensional torus into itself has a similar property is discussed.
Keywords: Lyapunov exponent, partially hyperbolic system, nonuniform hyperbolicity, dynamical system, skew product, Bernoulli diffeomorphism.
@article{FAA_2005_39_1_a2,
     author = {A. S. Gorodetski and Yu. S. Ilyashenko and V. A. Kleptsyn and M. B. Nalsky},
     title = {Nonremovable {Zero} {Lyapunov} {Exponents}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a2/}
}
TY  - JOUR
AU  - A. S. Gorodetski
AU  - Yu. S. Ilyashenko
AU  - V. A. Kleptsyn
AU  - M. B. Nalsky
TI  - Nonremovable Zero Lyapunov Exponents
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 27
EP  - 38
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a2/
LA  - ru
ID  - FAA_2005_39_1_a2
ER  - 
%0 Journal Article
%A A. S. Gorodetski
%A Yu. S. Ilyashenko
%A V. A. Kleptsyn
%A M. B. Nalsky
%T Nonremovable Zero Lyapunov Exponents
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 27-38
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a2/
%G ru
%F FAA_2005_39_1_a2
A. S. Gorodetski; Yu. S. Ilyashenko; V. A. Kleptsyn; M. B. Nalsky. Nonremovable Zero Lyapunov Exponents. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a2/