Coherent Local Hyperbolicity of a Linear Extension and the Essential Spectra of a Weighted Shift Operator on a Closed Interval
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 11-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the spaces $L_p$ of vector functions on a closed interval, weighted shift operators $B$ generated by diffeomorphisms of the interval are considered. The notion of coherent local hyperbolicity of the associated linear extension is introduced, and it is established that the closedness of the range of the operator $I-B$ is equivalent to coherent local hyperbolicity. On the basis of this result, the description of some essential spectra of the operator $B$ is given.
Keywords: weighted shift operator, essential spectrum, coherent local hyperbolicity.
@article{FAA_2005_39_1_a1,
     author = {A. B. Antonevich},
     title = {Coherent {Local} {Hyperbolicity} of a {Linear} {Extension} and the {Essential} {Spectra} of a {Weighted} {Shift} {Operator} on a {Closed} {Interval}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {11--26},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a1/}
}
TY  - JOUR
AU  - A. B. Antonevich
TI  - Coherent Local Hyperbolicity of a Linear Extension and the Essential Spectra of a Weighted Shift Operator on a Closed Interval
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 11
EP  - 26
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a1/
LA  - ru
ID  - FAA_2005_39_1_a1
ER  - 
%0 Journal Article
%A A. B. Antonevich
%T Coherent Local Hyperbolicity of a Linear Extension and the Essential Spectra of a Weighted Shift Operator on a Closed Interval
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 11-26
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a1/
%G ru
%F FAA_2005_39_1_a1
A. B. Antonevich. Coherent Local Hyperbolicity of a Linear Extension and the Essential Spectra of a Weighted Shift Operator on a Closed Interval. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 11-26. http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a1/

[1] Anosov D. V., “Ob additivnom gomologicheskom uravnenii, svyazannom s ergodicheskim povorotom okruzhnosti”, Izv. AN SSSR, ser. matem., 37:6 (1973), 1259–1274 | MR | Zbl

[2] Antonevich A. B., “Ob operatorakh, porozhdennykh lineinymi rasshireniyami diffeomorfizmov”, DAN SSSR, 243:4 (1978), 825–828 | MR | Zbl

[3] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[4] Antonevich A. B., Lebedev A. V., “Funktsionalnye i funktsionalno-operatornye uravneniya. $C^*$-algebraicheskii podkhod”, Trudy S.-Peterburg. matem. o-va, 6 (1998), 34–140 | MR

[5] Bronshtein I. U., Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984 | MR

[6] Gorin E. A., “Kak vyglyadit spektr endomorfizma disk-algebry”, Zap. nauch. semin. LOMI, 126, 1983, 55–68 | MR | Zbl

[7] Kitover A. K., “O spektre avtomorfizmov s vesom i teoreme Kamovitsa–Sheinberga”, Funkts. analiz i ego pril., 13:1 (1979), 70–71 | MR | Zbl

[8] Latushkin Yu. D., Stepin A. M., “Operatory vzveshennogo sdviga i lineinye rasshireniya dinamicheskikh sistem”, UMN, 46:2 (278) (1991), 85–143 | MR | Zbl

[9] Antonevich A., Lebedev A., Functional differential equations: I. $C^*$-theory, Longman Scientific Technical, Harlow, 1994 | MR | Zbl

[10] Antonevich A. B., Belitskii G., “The essential spectrums of a weighted shift operator in the spaces of continuous and differentiable functions”, Spectral and evolutionary problems, Vol. 8, Tavria Publ., Simferopol, 1998, 3–12 | MR

[11] Belitskii G., Bykov N., “Spaces of cohomologies associated with linear functional equations”, Ergodic Theory Dynam. Systems, 18 (1998), 343–356 | DOI | MR | Zbl

[12] Belitskii G., Lyubich Yu., “On the normal solvability of cohomological equations on compact topological spaces”, Operator Theory, Advances and Applications, 103, 1998, 75–87 | MR | Zbl

[13] Chicone C., Latushkin Yu., Evolution Semigroups in Dynamical Systems and Differential Equations, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[14] Karlovich A. Yu., Karlovich Y. I., “One-sided invertibility of binomial functional operators with a shift in rearrangement-invariant spaces”, Integral Equations Operator Theory, 42 (2002), 201–228 | DOI | MR | Zbl

[15] Kravchenko V. G., Litvinchuk G. S., Introduction to the Theory of Singular Integral Operators with Shift, Math. Appl., 289, Kluwer, 1994 | MR | Zbl