On Homogenization of Periodic Parabolic Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 86-90
Voir la notice de l'article provenant de la source Math-Net.Ru
We study homogenization in the small period limit for a periodic parabolic Cauchy problem in $\mathbb{R}^d$ and prove that the solutions converge in $L_2(\mathbb{R}^d)$ to the solution of the homogenized problem for each $t>0$. For the $L_2(\mathbb{R}^d)$-norm of the difference, we obtain an order-sharp estimate uniform with respect to the $L_2(\mathbb{R}^d)$-norm of the initial value.
Keywords:
periodic parabolic system, Cauchy problem, homogenization, effective medium.
@article{FAA_2004_38_4_a9,
author = {T. A. Suslina},
title = {On {Homogenization} of {Periodic} {Parabolic} {Systems}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {86--90},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a9/}
}
T. A. Suslina. On Homogenization of Periodic Parabolic Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 86-90. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a9/