On Homogenization of Periodic Parabolic Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 86-90
Cet article a éte moissonné depuis la source Math-Net.Ru
We study homogenization in the small period limit for a periodic parabolic Cauchy problem in $\mathbb{R}^d$ and prove that the solutions converge in $L_2(\mathbb{R}^d)$ to the solution of the homogenized problem for each $t>0$. For the $L_2(\mathbb{R}^d)$-norm of the difference, we obtain an order-sharp estimate uniform with respect to the $L_2(\mathbb{R}^d)$-norm of the initial value.
Keywords:
periodic parabolic system, Cauchy problem, homogenization, effective medium.
@article{FAA_2004_38_4_a9,
author = {T. A. Suslina},
title = {On {Homogenization} of {Periodic} {Parabolic} {Systems}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {86--90},
year = {2004},
volume = {38},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a9/}
}
T. A. Suslina. On Homogenization of Periodic Parabolic Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 86-90. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a9/
[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland, Amsterdam-New York, 1978 | MR
[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl
[4] Birman M. Sh., Suslina T. A., Systems, Approximations, Singular Integral Operators and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl
[5] Birman M. Sh., Suslina T. A., Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl