On Homogenization of Periodic Parabolic Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 86-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study homogenization in the small period limit for a periodic parabolic Cauchy problem in $\mathbb{R}^d$ and prove that the solutions converge in $L_2(\mathbb{R}^d)$ to the solution of the homogenized problem for each $t>0$. For the $L_2(\mathbb{R}^d)$-norm of the difference, we obtain an order-sharp estimate uniform with respect to the $L_2(\mathbb{R}^d)$-norm of the initial value.
Keywords: periodic parabolic system, Cauchy problem, homogenization, effective medium.
@article{FAA_2004_38_4_a9,
     author = {T. A. Suslina},
     title = {On {Homogenization} of {Periodic} {Parabolic} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--90},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a9/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - On Homogenization of Periodic Parabolic Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 86
EP  - 90
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a9/
LA  - ru
ID  - FAA_2004_38_4_a9
ER  - 
%0 Journal Article
%A T. A. Suslina
%T On Homogenization of Periodic Parabolic Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 86-90
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a9/
%G ru
%F FAA_2004_38_4_a9
T. A. Suslina. On Homogenization of Periodic Parabolic Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 86-90. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a9/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland, Amsterdam-New York, 1978 | MR

[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[4] Birman M. Sh., Suslina T. A., Systems, Approximations, Singular Integral Operators and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[5] Birman M. Sh., Suslina T. A., Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl