Regular Mittag-Leffler Kernels and Volterra Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 82-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the definition of an abstract Mittag-Leffler kernel $\mathcal{E}_\rho$ ranging in a separable Hilbert space $\mathfrak{H}$. In the simplest case, $\mathcal{E}_\rho(z)$ can be expressed via the Mittag-Leffler function $E_\rho(z,\mu)$. The kernel $\mathcal{E}_\rho$ is said to be $c$-regular if it generates an integral transform of Fourier–Dzhrbashyan type and $d$-regular if its range contains an unconditional basis of $\mathfrak{H}$. We give a complete description of $d$- and $c$-regular kernels, which permits us to answer a question posed by M. Krein. An application to the problem on the similarity of a rank one perturbation of a fractional power of a Volterra operator to a normal operator is considered.
Mots-clés : Mittag-Leffler kernel, Fourier–Dzhrbashyan transform, rank one perturbation
Keywords: Mittag-Leffler function, Volterra operator, fractional power.
@article{FAA_2004_38_4_a8,
     author = {G. M. Gubreev},
     title = {Regular {Mittag-Leffler} {Kernels} and {Volterra} {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {82--86},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a8/}
}
TY  - JOUR
AU  - G. M. Gubreev
TI  - Regular Mittag-Leffler Kernels and Volterra Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 82
EP  - 86
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a8/
LA  - ru
ID  - FAA_2004_38_4_a8
ER  - 
%0 Journal Article
%A G. M. Gubreev
%T Regular Mittag-Leffler Kernels and Volterra Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 82-86
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a8/
%G ru
%F FAA_2004_38_4_a8
G. M. Gubreev. Regular Mittag-Leffler Kernels and Volterra Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 82-86. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a8/

[1] Brodskii M. S., Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR

[2] Sekefalvi-Nad B., Foiash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[3] Gubreev G. M., Zapiski nauchnykh seminarov LOMI, 190, 1991, 34–80 | MR

[4] Gubreev G. M., Spektralnyi analiz biortogonalnykh razlozhenii, porozhdaemykh vesami Makenkhaupta, Diss. d.f.-m.n., FTINT, Kharkov, 1995

[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Nauka, M., 1984 | MR

[6] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR

[7] Ostrovskii I. V., Peresyolkova I. N., Theory of Functions and Applications, Collection of works dedicated to the memory of M. M. Djrbashian, 1995, 49–152

[8] Sedletskii A. M., Anal. Math., 20 (1994), 117–132 | DOI | MR

[9] Gelfand I. M., Graev M. I., Retakh V. S., UMN, 53:1 (319) (1998), 3–60 | DOI | MR | Zbl

[10] Maergoiz L. S., Algebra i analiz, 12:2 (2000), 1–63 | MR | Zbl

[11] Maergoiz L. S., Indikatornaya i sopryazhennaya diagrammy tseloi funktsii utochnennogo poryadka, Preprint 789F, Krasnoyarsk, 1998 | MR

[12] Gubreev G. M., Matem. sb., 190:12 (1999), 3–36 | DOI | MR | Zbl

[13] Gubreev G. M., Algebra i analiz, 12:6 (2000), 1–97 | MR

[14] Gubreev G. M., Volkova M. G., Zap. nauchn. semin. POMI, 290, 2002, 33–41 | MR | Zbl

[15] Levin B. Ya., Zapiski fiz.-mat. f-ta KhGU i KhMO, 27 (1961), 39–48 | MR