Real $AW^*$-Algebras of Type I
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 79-81
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R$ be a real $AW^*$-algebra, and suppose that its complexification $M=R+iR$ is also a (complex) $AW^*$-algebra. We prove that $R$ is of type $\mathrm{I}$ if and only if so is $M$.
Keywords:
real $C^*$-algebra, real $W^*$-algebra, real $AW^*$-algebra, type $\mathrm{I}$ algebra.
Mots-clés : complexification
Mots-clés : complexification
@article{FAA_2004_38_4_a7,
author = {Sh. A. Ayupov},
title = {Real $AW^*${-Algebras} of {Type} {I}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {79--81},
year = {2004},
volume = {38},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a7/}
}
Sh. A. Ayupov. Real $AW^*$-Algebras of Type I. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 79-81. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a7/
[1] Kaplansky I., Ann. Math., 53 (1951), 235–249 | DOI | MR | Zbl
[2] Kaplansky I., Ann. Math., 56 (1952), 460–472 | DOI | MR | Zbl
[3] Kaplansky I., Amer. J. Math., 75 (1953), 839–858 | DOI | MR | Zbl
[4] Dixmier J., Summa Brasil. Math., 2 (1951), 151–182 | MR | Zbl
[5] Albeverio S., Ayupov Sh. A., Abduvaitov A. H., On Real $AW^*$-algebras, Preprint No. 37, SFB 611 Bonn, 2002 | MR
[6] Li B. R., Real Operator Algebras, World Scientific, Singapore–New Jersey–London–Hong Kong, 2002 | MR
[7] Berberian S. K., Baer *-rings, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl
[8] Stormer E., Pacific J. Math., 21 (1967), 349–370 | DOI | MR