Real $AW^*$-Algebras of Type I
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 79-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a real $AW^*$-algebra, and suppose that its complexification $M=R+iR$ is also a (complex) $AW^*$-algebra. We prove that $R$ is of type $\mathrm{I}$ if and only if so is $M$.
Keywords: real $C^*$-algebra, real $W^*$-algebra, real $AW^*$-algebra, type $\mathrm{I}$ algebra.
Mots-clés : complexification
@article{FAA_2004_38_4_a7,
     author = {Sh. A. Ayupov},
     title = {Real $AW^*${-Algebras} of {Type} {I}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--81},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a7/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
TI  - Real $AW^*$-Algebras of Type I
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 79
EP  - 81
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a7/
LA  - ru
ID  - FAA_2004_38_4_a7
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%T Real $AW^*$-Algebras of Type I
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 79-81
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a7/
%G ru
%F FAA_2004_38_4_a7
Sh. A. Ayupov. Real $AW^*$-Algebras of Type I. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 79-81. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a7/

[1] Kaplansky I., Ann. Math., 53 (1951), 235–249 | DOI | MR | Zbl

[2] Kaplansky I., Ann. Math., 56 (1952), 460–472 | DOI | MR | Zbl

[3] Kaplansky I., Amer. J. Math., 75 (1953), 839–858 | DOI | MR | Zbl

[4] Dixmier J., Summa Brasil. Math., 2 (1951), 151–182 | MR | Zbl

[5] Albeverio S., Ayupov Sh. A., Abduvaitov A. H., On Real $AW^*$-algebras, Preprint No. 37, SFB 611 Bonn, 2002 | MR

[6] Li B. R., Real Operator Algebras, World Scientific, Singapore–New Jersey–London–Hong Kong, 2002 | MR

[7] Berberian S. K., Baer *-rings, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl

[8] Stormer E., Pacific J. Math., 21 (1967), 349–370 | DOI | MR