Reflection Subgroups of Reflection Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 90-92
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a discrete group generated by reflections in hyperbolic or Euclidean space, and let $H\subset G$ be a finite index reflection subgroup. Suppose that the fundamental chamber of $G$ is a finite volume polytope with $k$ facets. We prove that the fundamental chamber of $H$ has at least $k$ facets.
Keywords:
reflection group, Coxeter polytope.
@article{FAA_2004_38_4_a10,
author = {P. V. Tumarkin and A. A. Felikson},
title = {Reflection {Subgroups} of {Reflection} {Groups}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {90--92},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a10/}
}
P. V. Tumarkin; A. A. Felikson. Reflection Subgroups of Reflection Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 90-92. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a10/