Reflection Subgroups of Reflection Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 90-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a discrete group generated by reflections in hyperbolic or Euclidean space, and let $H\subset G$ be a finite index reflection subgroup. Suppose that the fundamental chamber of $G$ is a finite volume polytope with $k$ facets. We prove that the fundamental chamber of $H$ has at least $k$ facets.
Keywords: reflection group, Coxeter polytope.
@article{FAA_2004_38_4_a10,
     author = {P. V. Tumarkin and A. A. Felikson},
     title = {Reflection {Subgroups} of {Reflection} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {90--92},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a10/}
}
TY  - JOUR
AU  - P. V. Tumarkin
AU  - A. A. Felikson
TI  - Reflection Subgroups of Reflection Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 90
EP  - 92
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a10/
LA  - ru
ID  - FAA_2004_38_4_a10
ER  - 
%0 Journal Article
%A P. V. Tumarkin
%A A. A. Felikson
%T Reflection Subgroups of Reflection Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 90-92
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a10/
%G ru
%F FAA_2004_38_4_a10
P. V. Tumarkin; A. A. Felikson. Reflection Subgroups of Reflection Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 90-92. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a10/

[1] Andreev E. M., Matem. zametki, 8 (1970), 521–527 | MR | Zbl

[2] Coxeter H. S. M., “Finite groups generated by reflections, and their subgroups generated by reflections”, Proc. Cambridge Philos. Soc., 30 (1934), 466–482 | DOI | MR | Zbl