On the Inverse of the Generator of a Bounded $C_0$-Semigroup
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 6-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be the generator of a uniformly bounded $C_0$-semigroup in a Banach space $B$, and let $A$ have a densely defined inverse $A^{-1}$. We present sufficient conditions on the resolvent $(A-\lambda I)^{-1}$, $\operatorname{Re}\lambda>0$, under which $A^{-1}$ is also the generator of a uniformly bounded $C_0$-semigroup.
Keywords: uniformly bounded $C_0$-semigroup, inverse of the generator, Banach space, Carleson embedding theorem.
@article{FAA_2004_38_4_a1,
     author = {A. M. Gomilko},
     title = {On the {Inverse} of the {Generator} of a {Bounded} $C_0${-Semigroup}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {6--12},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a1/}
}
TY  - JOUR
AU  - A. M. Gomilko
TI  - On the Inverse of the Generator of a Bounded $C_0$-Semigroup
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 6
EP  - 12
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a1/
LA  - ru
ID  - FAA_2004_38_4_a1
ER  - 
%0 Journal Article
%A A. M. Gomilko
%T On the Inverse of the Generator of a Bounded $C_0$-Semigroup
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 6-12
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a1/
%G ru
%F FAA_2004_38_4_a1
A. M. Gomilko. On the Inverse of the Generator of a Bounded $C_0$-Semigroup. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 6-12. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a1/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL., M., 1962

[3] de Laubenfels R., “Inverses of generators”, Proc. Amer. Math. Soc., 104:2 (1988), 443–448 | DOI | MR

[4] Gorbachuk M. L., Matsishin I. T., “Povedenie na beskonechnosti reshenii differentsialnogo uravneniya pervogo poryadka parabolicheskogo tipa v banakhovom prostranstve”, DAN SSSR, 312:3 (1990), 521–524 | MR | Zbl

[5] Gomilko A. M., “Ob usloviyakh na proizvodyaschii operator ravnomerno ogranichennoi $C_0$-polugruppy operatorov”, Funkts. analiz i ego pril., 33:4 (1999), 66–69 | DOI | MR | Zbl

[6] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[7] Goldstein J. A., Semigroups of linear operators and applications, Oxford Univ. Press, New York, 1985 | MR | Zbl

[8] de Laubenfels R., “Powers of generators of holomorphic semigroups”, Proc. Amer. Math. Soc., 99:1 (1987), 105–108 | DOI | MR

[9] Gorbachuk V. I., Knyazyuk A. V., “Granichnye znacheniya reshenii differentsialno-operatornykh uravnenii”, UMN, 44:3 (1989), 55–91 | MR | Zbl

[10] Mirotin A. R., “O $\mathcal{T}$-ischislenii generatorov $C_0$-polugrupp”, Sib. matem. zh., 39:3 (1998), 571–582 | MR | Zbl

[11] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–79 | MR

[12] Vasilev V. V., Krein S. G., Piskarev S. I., “Polugruppy operatorov, kosinus operator-funktsii i lineinye differentsialnye uravneniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 28, VINITI, M., 1990, 87–202 | MR