Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2004_38_3_a7, author = {T. A. Suslina}, title = {On the {Homogenization} of the {Periodic} {Maxwell} {System}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {90--94}, publisher = {mathdoc}, volume = {38}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a7/} }
T. A. Suslina. On the Homogenization of the Periodic Maxwell System. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 90-94. http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a7/
[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam-New York, 1978 | MR
[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl
[4] Birman M. Sh., Suslina T. A., Systems, Approximations, Singular Integral Operators and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl
[5] Birman M. Sh., Suslina T. A., Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl