On the Homogenization of the Periodic Maxwell System
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 90-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the homogenization problem for the stationary periodic Maxwell system in $\mathbb{R}^3$ in the small period limit. Each field is represented as a sum of two terms. For some terms, we obtain convenient approximations in the $L_2(\mathbb{R}^3)$-norm.
Keywords: periodic Maxwell operator, homogenization, effective medium.
@article{FAA_2004_38_3_a7,
     author = {T. A. Suslina},
     title = {On the {Homogenization} of the {Periodic} {Maxwell} {System}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {90--94},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a7/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - On the Homogenization of the Periodic Maxwell System
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 90
EP  - 94
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a7/
LA  - ru
ID  - FAA_2004_38_3_a7
ER  - 
%0 Journal Article
%A T. A. Suslina
%T On the Homogenization of the Periodic Maxwell System
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 90-94
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a7/
%G ru
%F FAA_2004_38_3_a7
T. A. Suslina. On the Homogenization of the Periodic Maxwell System. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 90-94. http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a7/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam-New York, 1978 | MR

[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[4] Birman M. Sh., Suslina T. A., Systems, Approximations, Singular Integral Operators and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[5] Birman M. Sh., Suslina T. A., Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl