The Spectrum of Two-Particle Bound States for the Transfer Matrices of Gibbs Fields (an Isolated Bound State)
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 52-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper initiates a general study of the spectrum of two-particle bound states of transfer matrices for a fairly wide class of Gibbs fields at high temperature $T$. In the present first part of this study, a detailed statement of the problem is given and the existence of a so-called “isolated level” lying at a distance $\sim 1/{T^2}$ from the boundary of the continuous spectrum is established for all values of the total quasimomentum $\Lambda$ of the system. In the concluding part of the paper, we prove that there are no other bound states provided that $\Lambda$ is far from certain singular values. In the second part, we will consider bound states for $\Lambda$ close to the singular values. The distance from these states (adjacent levels, in the authors' terminology) to the continuous spectrum is at most of the order of $1/T^4$.
Keywords: Gibbs fields, bound states, Fredholm determinant, generic potential.
Mots-clés : transfer matrix
@article{FAA_2004_38_3_a4,
     author = {E. L. Lakshtanov and R. A. Minlos},
     title = {The {Spectrum} of {Two-Particle} {Bound} {States} for the {Transfer} {Matrices} of {Gibbs} {Fields} (an {Isolated} {Bound} {State)}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--69},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a4/}
}
TY  - JOUR
AU  - E. L. Lakshtanov
AU  - R. A. Minlos
TI  - The Spectrum of Two-Particle Bound States for the Transfer Matrices of Gibbs Fields (an Isolated Bound State)
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 52
EP  - 69
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a4/
LA  - ru
ID  - FAA_2004_38_3_a4
ER  - 
%0 Journal Article
%A E. L. Lakshtanov
%A R. A. Minlos
%T The Spectrum of Two-Particle Bound States for the Transfer Matrices of Gibbs Fields (an Isolated Bound State)
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 52-69
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a4/
%G ru
%F FAA_2004_38_3_a4
E. L. Lakshtanov; R. A. Minlos. The Spectrum of Two-Particle Bound States for the Transfer Matrices of Gibbs Fields (an Isolated Bound State). Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 52-69. http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a4/

[1] Malyshev V. A., Minlos R. A., “Invariant subspaces of clustering operators. I, II”, J. Stat. Phys., 21:3 (1979), 231–242 ; Commun. Math. Phys., 82 (1981), 211–226 | DOI | MR | DOI | MR | Zbl

[2] Malyshev V. A., Minlos R. A., Lineinye operatory v beskonechno-chastichnykh sistemakh, Nauka, M., 1992

[3] Onzager L., Kaufman B., “Crystal statistics”, Phys. Rev., 76 (1949), 232

[4] Minlos R. A., Sinai Ya. G., “Izuchenie spektra stokhasticheskikh operatorov, voznikayuschikh v reshetchatykh modelyakh gaza”, Teor. mat. fiz., 2 (1970), 230–243 | MR

[5] Mamatov Sh. S., Minlos R. A., “Svyazannye sostoyaniya dvukhchastichnogo klasternogo operatora”, Teor. mat. fiz., 79:2 (1989), 163–179 | MR

[6] Mamatov Sh. S., O svyazannykh sostoyaniyakh transfer-matritsy gibbsovskogo reshetchatogo polya, Diss. k.f.-m.n., 1986

[7] Malyshev V. A., Minlos R. A., Gibbsovskie sluchainye polya, Nauka, M., 1985 | MR

[8] Abdullaev Zh. I., Lakaev S. N., “On spectral properties of the matrix-valued Friedrichs model”, Adv. Soviet Math., 5, ed. Minlos R. A., Amer. Math. Soc., Providence, R.I., 1991, 1–37 | MR

[9] Minlos R. A., Zhizhina E., “Leading branches of the transfer-matrix spectrum for lattice spin systems”, J. Statist. Phys., 108 (2002), 885–904 | DOI | MR | Zbl

[10] Abdullaev J., Minlos R. A., “An extension of the Ising Model”, Adv. Soviet Math., 20, Amer. Math. Soc., Providence, R.I., 1994, 1–20 | MR | Zbl

[11] Schor R. S., O'Carrol M., “Transfer matrix spectrum and bound states for the lattice classical ferromagnetic spin systems at high temperature”, J. Statist. Phys., 99:5–6 (2000), 1265–1279 | DOI | MR | Zbl

[12] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, Leningrad, 1980 | MR

[13] Yafaev D. R., Teoriya rasseyaniya, Izd-vo SPbGU, 1996

[14] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[15] Lakshtanov E. L., “Starshie vetvi spektra transfer-matritsy dlya obschikh spinovykh modelei s vzaimodeistviem na odin shag”, Vestnik MGU, ser. matem., 2004, no. 6, 3–7 | MR | Zbl