Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 29-38
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve Tikhomirov's problem on the explicit computation of sharp constants in the Kolmogorov type inequalities
$$
|f^{(k)}(0)|\le A_{n,k}\bigg(\int_0^{+\infty}(|f(x)|^2+|f^{(n)}(x)|^2)\,dx\bigg)^{1/2}.
$$
Specifically, we prove that
$$
A_{n,k}=\bigg(\sin\frac{\pi(2k+1)}{2n}\bigg)^{-1/2} \prod_{s=1}^k\operatorname{cot}\frac{\pi s}{2n}\,
$$
for all $n\in\{1,2,\dots\}$ and $k\in\{0,\dots,n-1\}$. We establish symmetry and regularity properties of the numbers $A_{n,k}$ and study their asymptotic behavior as $n\to\infty$ for the cases $k=O(n^{2/3})$ and $k/n\to\alpha\in(0,1)$.
Similar problems were previously studied by Gabushin and Taikov.
Keywords:
extrapolation with minimal norm, Lagrange optimality principle, inversion of special matrices.
@article{FAA_2004_38_3_a2,
author = {G. A. Kalyabin},
title = {Sharp {Constants} in {Inequalities} for {Intermediate} {Derivatives} (the {Gabushin} {Case)}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {29--38},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a2/}
}
TY - JOUR AU - G. A. Kalyabin TI - Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case) JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2004 SP - 29 EP - 38 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a2/ LA - ru ID - FAA_2004_38_3_a2 ER -
G. A. Kalyabin. Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case). Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 29-38. http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a2/