Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 29-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve Tikhomirov's problem on the explicit computation of sharp constants in the Kolmogorov type inequalities $$ |f^{(k)}(0)|\le A_{n,k}\bigg(\int_0^{+\infty}(|f(x)|^2+|f^{(n)}(x)|^2)\,dx\bigg)^{1/2}. $$ Specifically, we prove that $$ A_{n,k}=\bigg(\sin\frac{\pi(2k+1)}{2n}\bigg)^{-1/2} \prod_{s=1}^k\operatorname{cot}\frac{\pi s}{2n}\, $$ for all $n\in\{1,2,\dots\}$ and $k\in\{0,\dots,n-1\}$. We establish symmetry and regularity properties of the numbers $A_{n,k}$ and study their asymptotic behavior as $n\to\infty$ for the cases $k=O(n^{2/3})$ and $k/n\to\alpha\in(0,1)$. Similar problems were previously studied by Gabushin and Taikov.
Keywords: extrapolation with minimal norm, Lagrange optimality principle, inversion of special matrices.
@article{FAA_2004_38_3_a2,
     author = {G. A. Kalyabin},
     title = {Sharp {Constants} in {Inequalities} for {Intermediate} {Derivatives} (the {Gabushin} {Case)}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a2/}
}
TY  - JOUR
AU  - G. A. Kalyabin
TI  - Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 29
EP  - 38
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a2/
LA  - ru
ID  - FAA_2004_38_3_a2
ER  - 
%0 Journal Article
%A G. A. Kalyabin
%T Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 29-38
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a2/
%G ru
%F FAA_2004_38_3_a2
G. A. Kalyabin. Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case). Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 29-38. http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a2/

[1] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[2] Gabushin V. N., “O nailuchshem priblizhenii operatora differentsirovaniya na poluosi”, Matem. zametki, 6:5 (1969), 573–582 | MR | Zbl

[3] Taikov L. V., “Neravenstva kolmogorovskogo tipa i nailuchshie formuly chislennogo differentsirovaniya”, Matem. zametki, 4:2 (1968), 233–238 | MR | Zbl

[4] Kalyabin G. A., “Nailuchshie operatory prodolzheniya dlya sobolevskikh prostranstv na polupryamoi”, Funkts. analiz i ego pril., 36:2 (2002), 28–37 | DOI | MR | Zbl

[5] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[6] Akhiezep N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[7] Kalyabin G. A., “On extrapolation with minimal norms in Bernstein classes”, Proc. Razmadze Math. Inst., 119 (1999), 85–92 | MR | Zbl

[8] Kalyabin G. A., “O tochnykh konstantakh v neravenstvakh Kolmogorova dlya prostranstv Soboleva $W_2^n(\mathbb R_+)$”, Dokl. RAN, 388:2 (2003), 159–161 | MR | Zbl

[9] Kalyabin G. A., “Asimptotika naimenshikh sobstvennykh znachenii matrits tipa Gilberta”, Funkts. analiz i ego pril., 35:1 (2001), 80–84 | DOI | MR | Zbl

[10] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR