The Hamiltonians of Pseudorelativistic Atoms with Finite-Mass Nuclei: The Structure of the Discrete Spectrum
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 85-91
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the structure of the discrete spectrum of pseudorelativistic Hamiltonians $H$ for atoms and positive ions with finite-mass nuclei and with $n$ electrons, where $n\ge1$ is arbitrary. The center-of-mass motion cannot be separated, and hence we study the spectrum of the restriction $H_P$ of $H$ to the subspace of states with given value $P$ of the total momentum of the system. For the operators $H_P$ we discover a) two-sided estimates for the counting function of the discrete spectrum $\sigma_d(H_P)$ of $H_P$ in terms of the counting functions of some effective two-particle operators; b) the leading term of the spectral asymptotics of $\sigma_d(H_P)$ near the lower bound $\inf\sigma_{\operatorname{ess}}(H_P)$ of the essential spectrum of $H_P$. The structure of the discrete spectrum of such systems was known earlier only for $n=1$.
Keywords:
pseudorelativisic Hamiltonian, discrete spectrum, spectral asymptotics.
@article{FAA_2004_38_2_a8,
author = {G. M. Zhislin},
title = {The {Hamiltonians} of {Pseudorelativistic} {Atoms} with {Finite-Mass} {Nuclei:} {The} {Structure} of the {Discrete} {Spectrum}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--91},
year = {2004},
volume = {38},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a8/}
}
TY - JOUR AU - G. M. Zhislin TI - The Hamiltonians of Pseudorelativistic Atoms with Finite-Mass Nuclei: The Structure of the Discrete Spectrum JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2004 SP - 85 EP - 91 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a8/ LA - ru ID - FAA_2004_38_2_a8 ER -
G. M. Zhislin. The Hamiltonians of Pseudorelativistic Atoms with Finite-Mass Nuclei: The Structure of the Discrete Spectrum. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 85-91. http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a8/
[1] Vugalter S. A., Zhislin G. M., TMF, 121:2 (1999), 297–306 | DOI | MR
[2] Vugalter S. A., Zhislin G. M., Funkts. analiz. i ego pril., 32:2 (1998), 83–86 | DOI | MR | Zbl
[3] Zhislin G. M., Vugalter S. A., Izv. AN, ser. matem., 66:1 (2002), 71–102 | DOI | MR | Zbl
[4] Lewis R. T., Siedentop H., Vugalter S., Annals of Institute Poincaré, 97:1 (1997), 1–28 | MR
[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. IV. Analiz operatorov, Mir, M., 1982 | MR