Boundary Conditions for Multidimensional Integrable Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 71-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an efficient method for finding boundary conditions compatible with integrability for multidimensional integrable equations of Kadomtsev–Petviashvili type. It is observed in all known examples that imposing an integrable boundary condition at a point results in an additional involution for the $t$-operator of the Lax pair. The converse is also likely to be true: if constraints imposed on the coefficients of the $t$-operator of the $L$-$A$ pair result in a broader group of involutions of the $t$-operator, then these constraints determine integrable boundary conditions. New examples of boundary conditions are found for the Kadomtsev–Petviashvili and modified Kadomtsev–Petviashvili equations.
Keywords: integrable equation, Hamiltonian structure, Kadomtsev–Petviashvili equation
Mots-clés : Lax pair.
@article{FAA_2004_38_2_a6,
     author = {I. T. Habibullin and E. V. Gudkova},
     title = {Boundary {Conditions} for {Multidimensional} {Integrable} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {71--83},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a6/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - E. V. Gudkova
TI  - Boundary Conditions for Multidimensional Integrable Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 71
EP  - 83
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a6/
LA  - ru
ID  - FAA_2004_38_2_a6
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A E. V. Gudkova
%T Boundary Conditions for Multidimensional Integrable Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 71-83
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a6/
%G ru
%F FAA_2004_38_2_a6
I. T. Habibullin; E. V. Gudkova. Boundary Conditions for Multidimensional Integrable Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 71-83. http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a6/

[1] Sklyanin E. K., “Granichnye usloviya dlya integriruemykh sistem”, Funkts. analiz i ego pril., 21:2 (1987), 86–87 | MR | Zbl

[2] Gürel B., Gürses M., Habibullin I. T., “Boundary value problems, compatible with symmetries”, Phys. Lett. A, 190 (1994), 231–237 | DOI | MR | Zbl

[3] Bikbaev R. F., Tarasov V. O., “Neodnorodnaya kraevaya zadacha na poluosi i na otrezke dlya uravneniya sine-Gordon”, Algebra i analiz, 3:4 (1991), 78–92 | MR

[4] Habibullin I. T., Kazakova T. G., “Boundary conditions for integrable chains”, J. Phys. A: Math. and Gen., 34 (2001), 10369–10376 | DOI | MR | Zbl

[5] Habibullin I. T., Vil'danov A. N., “Boundary conditions, consistent with L-A-pairs”, Proc. of the International Conference Modern Group Analysis (2000), ed. V. A. Baikov, Ufa, 2001, 80–81

[6] Khabibullin I. T., “Granichnye zadachi na poluploskosti dlya uravneniya Ishimori, sovmestimye s metodom obratnoi zadachi rasseyaniya”, TMF, 91:3 (1992), 363–376 | MR

[7] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[8] Degasperis A., Manakov S. V., Santini P. M., “Smeshannye zadachi dlya lineinykh i solitonnykh uravnenii v chastnykh proizvodnykh”, TMF, 133:2 (2002), 184–201 | DOI | MR

[9] Kadomtsev B. B., Petviashvili V. I., “Ob ustoichivosti uedinennykh voln v slabo dispergiruyuschikh sredakh”, DAN SSSR, 192:4 (1970), 753–756 | Zbl

[10] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[11] Dryuma V. S., “Ob analiticheskom reshenii dvumernogo uravneniya Kortevega–de Vriza (KDV)”, Pisma v ZhETF, 19:12 (1974), 753–755

[12] Zakharov V. E., Shabat A. B., “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi teorii rasseyaniya”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | MR | Zbl

[13] Grinevich P. G., Preobrazovanie rasseyaniya dlya dvumernogo operatora Shrëdingera pri odnoi energii i svyazannye s nim integriruemye uravneniya matematicheskoi fiziki, Diss. d.f.-m.n., ITF, Chernogolovka, 1999

[14] Adler V. E., Shabat A. B., Yamilov R. I., “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | MR | Zbl

[15] Shabat A. B., “Higher symmetries of two-dimensional lattices”, Phys. Lett. A, 200:121 (1995) | MR | Zbl

[16] Konopelchenko B. G., “On the gauge-invariant description of the evolution equations integrable by Gelfand–Dikij spectral problems”, Phys. Lett. A, 92:323 (1982) | MR

[17] Jimbo M., Miwa T., “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19(3):943 (1983) | MR | Zbl

[18] Veselov A. P., Novikov S. P., “Operatory Shrëdingera s konechnozonnymi dvumernymi potentsialami. Yavnye formuly i evolyutsionnye uravneniya”, DAN SSSR, 279:20 (1984) | MR

[19] Khabibullin I. T., “Nachalno-kraevaya zadacha dlya uravneniya KdF na poluosi s odnorodnymi kraevymi usloviyami”, TMF, 130:1 (2002), 31–53 | DOI | MR | Zbl