Deficiency Indices of a Symmetric Ordinary Differential Operator with Infinitely Many Degeneration Points
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be the minimal symmetric operator in $L^2(\mathbb{R})$ generated by the differential expression $(-1)^n(c(x)f^{(n)})^{(n)}$, $n\ge1$, with a real coefficient $c(x)$ that has countably many zeros without finite accumulation points and is infinitely smooth at all points $x\in\mathbb{R}$ with $c(x)\ne0$. We study the value $\operatorname{Def}H$ of the deficiency indices of $H$. It is shown that $\operatorname{Def}H=+\infty$ if infinitely many zeros of $c(x)$ have multiplicities $p$ satisfying the inequality $n-1/2$. Our second result pertains to the case in which the set of zeros of $c(x)$ is bounded neither above nor below. Under this condition, $\operatorname{Def}H=0$ provided that the multiplicity of each zero is greater than or equal to $2n-1/2$. The multiplicities of zeros of $c(x)$ are understood in the paper in a broader sense than in the standard definition.
Keywords: symmetric operator, deficiency indices, degenerate ordinary differential operator.
@article{FAA_2004_38_2_a4,
     author = {Yu. B. Orochko},
     title = {Deficiency {Indices} of a {Symmetric} {Ordinary} {Differential} {Operator} with {Infinitely} {Many} {Degeneration} {Points}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a4/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Deficiency Indices of a Symmetric Ordinary Differential Operator with Infinitely Many Degeneration Points
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 55
EP  - 64
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a4/
LA  - ru
ID  - FAA_2004_38_2_a4
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Deficiency Indices of a Symmetric Ordinary Differential Operator with Infinitely Many Degeneration Points
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 55-64
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a4/
%G ru
%F FAA_2004_38_2_a4
Yu. B. Orochko. Deficiency Indices of a Symmetric Ordinary Differential Operator with Infinitely Many Degeneration Points. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a4/

[1] Orochko Yu. B., Funkts. analiz i ego pril., 28 (1994), 69–72 | Zbl

[2] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[3] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[4] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, Mir, M., 1966

[5] Rapoport I. M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954 | MR