Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 38-54
Voir la notice de l'article provenant de la source Math-Net.Ru
We compute the discrete affine group of Schlesinger transformations for isomonodromic deformations of a Fuchsian system of second-order differential equations. These transformations are treated as isomorphisms between the moduli spaces of logarithmic $sl(2)$-connections with given eigenvalues of the residues on $\mathbb{P}^1$. The discrete structure is computed with the use of the modification technique for bundles with connections. The result generalizes the well-known classical computations of symmetries of the hypergeometric equation, the Heun equation, and the sixth Painlevé equation.
Keywords:
Schlesinger transformations, the Frobenius–Hecke sheaves, Fuchsian systems, the hypergeometric equation, the Heun equation.
@article{FAA_2004_38_2_a3,
author = {S. V. Oblezin},
title = {Discrete {Symmetries} of {Systems} of {Isomonodromic} {Deformations} of {Second-Order} {Fuchsian} {Differential} {Equations}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {38--54},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a3/}
}
TY - JOUR AU - S. V. Oblezin TI - Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2004 SP - 38 EP - 54 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a3/ LA - ru ID - FAA_2004_38_2_a3 ER -
%0 Journal Article %A S. V. Oblezin %T Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations %J Funkcionalʹnyj analiz i ego priloženiâ %D 2004 %P 38-54 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a3/ %G ru %F FAA_2004_38_2_a3
S. V. Oblezin. Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 38-54. http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a3/