Heat Equations in a Nonholonomic Frame
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 12-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of heat equations in a nonholonomic frame is considered. Solutions of the system are constructed in the form of general sigma functions of Abelian tori. As a corollary, we solve the problem (of general interest) to describe the generators of the ring of differential operators annihilating the sigma functions of families of plane algebraic curves.
Keywords: nonholonomic frame, heat equations, sigma and theta functions in several variables, discriminant varieties.
@article{FAA_2004_38_2_a1,
     author = {V. M. Buchstaber and D. V. Leikin},
     title = {Heat {Equations} in a {Nonholonomic} {Frame}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {12--27},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - D. V. Leikin
TI  - Heat Equations in a Nonholonomic Frame
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 12
EP  - 27
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a1/
LA  - ru
ID  - FAA_2004_38_2_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A D. V. Leikin
%T Heat Equations in a Nonholonomic Frame
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 12-27
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a1/
%G ru
%F FAA_2004_38_2_a1
V. M. Buchstaber; D. V. Leikin. Heat Equations in a Nonholonomic Frame. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 12-27. http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a1/

[1] Arnold V. I., Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996 | MR

[2] Baker H. F., Abelian Functions, Cambridge University Press, 1995 | MR | Zbl

[3] Baker H. F., Multiply Periodic Functions, Cambridge University Press, Cambridge, 1907 | Zbl

[4] Bolza O., “The partial differential equations for the hyperelliptic $\theta$ and $\sigma$-functions”, Amer. J. Math., 21 (1899), 107–125 | DOI | MR | Zbl

[5] Bolza O., “Remark concerning expansions of the hyperelliptic $\sigma$-functions”, Amer. J. Math., 22 (1900), 101–112 | DOI | MR | Zbl

[6] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 1–125 | MR

[7] Bukhshtaber V. M., Leikin D. V., Enolskii V. Z., “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR | Zbl

[8] Bukhshtaber V. M., Leikin D. V., “Algebry Li, assotsiirovannye s $\sigma$-funktsiyami, i versalnye deformatsii”, UMN, 57:3 (2002), 145–146 | DOI | MR | Zbl

[9] Bukhshtaber V. M., Leikin D. V., “Graduirovannye algebry Li, zadayuschie giperellipticheskie $\sigma$-funktsii”, DAN, 385:5 (2002), 583–586 | MR

[10] Bukhshtaber V. M., Leikin D. V., “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | DOI | MR | Zbl

[11] Frobenius F., Stickelberger L., “Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, Crelle's Journal, XCII (1882), 311–337 | MR

[12] Klein F., “Über hyperelliptische Sigmafunktionen”, Gesammelte Mathematische Abhandlungen, 3, Teubner, Berlin, 1923, 323–387 | DOI | MR

[13] Krazer A., “Zur Bildung allgemeiner $\sigma$-Functionen”, Math. Ann., 33 (1890), 591–599 | DOI | MR

[14] Weierstrass K., “Zur Theorie der elliptischen Funktionen”, Mathematische Werke, 2, Teubner, Berlin, 1894, 245–255

[15] Wiltheiss E., “Partielle Differentialgleichungen der hyperelliptishe Thetafunktionen”, Math. Ann., 31 (1888), 134–155 | DOI | MR

[16] Wiltheiss E., “Ueber die Potenzreihen der hyperelliptischen Thetafunktionen”, Math. Ann., 31 (1888), 410–423 | DOI | MR

[17] Zakalyukin V. M., “Perestroiki volnovykh frontov, zavisyaschikh ot odnogo parametra”, Funkts. analiz i ego pril., 10:2 (1976), 69–70 | MR | Zbl