On the Statistics of Partial Quotients of Finite Continued Fractions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 1-11
Cet article a éte moissonné depuis la source Math-Net.Ru
We refine the remainder estimate in the asymptotic formula, earlier obtained in a joint paper with V. A. Bykovskii, for Arnold's problem about Gauss–Kuzmin statistics.
Keywords:
continued fraction, Gauss–Kuzmin statistics.
Mots-clés : partial quotient, convergent
Mots-clés : partial quotient, convergent
@article{FAA_2004_38_2_a0,
author = {M. O. Avdeeva},
title = {On the {Statistics} of {Partial} {Quotients} of {Finite} {Continued} {Fractions}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--11},
year = {2004},
volume = {38},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a0/}
}
M. O. Avdeeva. On the Statistics of Partial Quotients of Finite Continued Fractions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a0/
[1] Arnold V. I., Tsepnye drobi, MTsNMO, M., 2000
[2] Zadachi Arnolda, Fazis, M., 2000, zadacha 1993-11(C) | MR
[3] Avdeeva M. O., Bykovskii V. A., Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, Preprint, Dalnauka, Vladivostok, 2002
[4] Khinchin A. Ya., Tsepnye drobi, Fizmatgiz, M., 1961 | MR
[5] Heilbronn H., “On the average length of a class of finite continued fractions”, Abh. Zahlentheorie Anal., VEB Deutsher Verlag der Wisenschaften, Berlin, Plenum Press, New York, 1968, 89–96 | MR
[6] Sarnak P., Modulyarnye formy i ikh prilozheniya, Fazis, M., 1998
[7] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1972 | MR