On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 85-88
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that the $r$ largest Jordan blocks disappear and all other blocks remain the same in the part of the Jordan form corresponding to a given eigenvalue $\lambda$ under a generic rank $r$ perturbation. Moreover, a necessary and sufficient condition on the entries of a perturbation under which the spectral properties of $\lambda$ change in this manner is obtained with the use of the resolvent technique for the case in which the geometric multiplicity of $\lambda$ is greater than or equal to $r$. A Jordan basis in the corresponding root space is constructed from the Jordan chains of the original matrix. A complete description of how the spectrum changes in a small neighborhood of the point $z=\lambda$ is given for the case of a small parameter multiplying the perturbation.
Keywords:
generic rank $r$ perturbation, scalar resolvent matrix, root space, Jordan block, Jordan basis
Mots-clés : Binet–Cauchy formula, Laurent series.
Mots-clés : Binet–Cauchy formula, Laurent series.
@article{FAA_2004_38_1_a8,
author = {S. V. Savchenko},
title = {On the {Change} in the {Spectral} {Properties} of a {Matrix} under {Perturbations} of {Sufficiently} {Low} {Rank}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--88},
year = {2004},
volume = {38},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a8/}
}
TY - JOUR AU - S. V. Savchenko TI - On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2004 SP - 85 EP - 88 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a8/ LA - ru ID - FAA_2004_38_1_a8 ER -
S. V. Savchenko. On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 85-88. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a8/
[1] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980 | MR
[2] Baumgartel H., Analytic Perturbation Theory for Matrices and Operators, Birkhäuser, Basel, 1985 | MR
[3] Lidskii V. B., Zh. vychisl. matem. i matem. fiz., 6:1 (1966), 52–60 | MR | Zbl
[4] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR