Quasi-Invariant Measures and Irreducible Representations of the Inductive Limit of Special Linear Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 82-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Unitary representations of the group $G=\operatorname{SL}_0(2\infty,\mathbb{R})=\varinjlim_{n}\operatorname{SL}(2n-1,\mathbb{R})$ are constructed. The construction uses $G$-quasi-invariant measures on some $G$-spaces that are subspaces of the space $\operatorname{Mat}(2\infty,\mathbb{R})$ of two-way infinite real matrices. We give a criterion for the irreducibility of these representations.
Keywords: infinite-dimensional special linear group, irreducible unitary representation, quasi-invariant measure
Mots-clés : Ismagilov's conjecture.
@article{FAA_2004_38_1_a7,
     author = {A. V. Kosyak},
     title = {Quasi-Invariant {Measures} and {Irreducible} {Representations} of the {Inductive} {Limit} of {Special} {Linear} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {82--84},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a7/}
}
TY  - JOUR
AU  - A. V. Kosyak
TI  - Quasi-Invariant Measures and Irreducible Representations of the Inductive Limit of Special Linear Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 82
EP  - 84
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a7/
LA  - ru
ID  - FAA_2004_38_1_a7
ER  - 
%0 Journal Article
%A A. V. Kosyak
%T Quasi-Invariant Measures and Irreducible Representations of the Inductive Limit of Special Linear Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 82-84
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a7/
%G ru
%F FAA_2004_38_1_a7
A. V. Kosyak. Quasi-Invariant Measures and Irreducible Representations of the Inductive Limit of Special Linear Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 82-84. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a7/

[1] Kosyak A. V., Funkts. analiz i ego pril., 36:4 (2003), 78–81 | DOI | MR

[2] Kosyak A. V., Methods of Funct. Anal. Topology, 8:3 (2002), 27–45 | MR | Zbl

[3] Dixmier J., Les algèbres d'operateurs dans l'espace hilbertien $2^e$ édition, Gautiers-Villars, Paris, 1969 | MR

[4] Beckenbach E. F., Bellmann R., Inequalities, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1961 | MR | Zbl