Quasi-Invariant Measures and Irreducible Representations of the Inductive Limit of Special Linear Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 82-84
Cet article a éte moissonné depuis la source Math-Net.Ru
Unitary representations of the group $G=\operatorname{SL}_0(2\infty,\mathbb{R})=\varinjlim_{n}\operatorname{SL}(2n-1,\mathbb{R})$ are constructed. The construction uses $G$-quasi-invariant measures on some $G$-spaces that are subspaces of the space $\operatorname{Mat}(2\infty,\mathbb{R})$ of two-way infinite real matrices. We give a criterion for the irreducibility of these representations.
Keywords:
infinite-dimensional special linear group, irreducible unitary representation, quasi-invariant measure
Mots-clés : Ismagilov's conjecture.
Mots-clés : Ismagilov's conjecture.
@article{FAA_2004_38_1_a7,
author = {A. V. Kosyak},
title = {Quasi-Invariant {Measures} and {Irreducible} {Representations} of the {Inductive} {Limit} of {Special} {Linear} {Groups}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {82--84},
year = {2004},
volume = {38},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a7/}
}
TY - JOUR AU - A. V. Kosyak TI - Quasi-Invariant Measures and Irreducible Representations of the Inductive Limit of Special Linear Groups JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2004 SP - 82 EP - 84 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a7/ LA - ru ID - FAA_2004_38_1_a7 ER -
A. V. Kosyak. Quasi-Invariant Measures and Irreducible Representations of the Inductive Limit of Special Linear Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 82-84. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a7/
[1] Kosyak A. V., Funkts. analiz i ego pril., 36:4 (2003), 78–81 | DOI | MR
[2] Kosyak A. V., Methods of Funct. Anal. Topology, 8:3 (2002), 27–45 | MR | Zbl
[3] Dixmier J., Les algèbres d'operateurs dans l'espace hilbertien $2^e$ édition, Gautiers-Villars, Paris, 1969 | MR
[4] Beckenbach E. F., Bellmann R., Inequalities, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1961 | MR | Zbl