Asymptotic Invertibility and the Collective Asymptotic Spectral Behavior of Generalized One-Dimensional Discrete Convolutions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 81-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic invertibility as $n\to+\infty$ of matrices of the form $\alpha_{kj}^{(n)}=a(k/n,j/n,k-j)$ and $\beta_{kj}^{(n)}=b(k/E(n),j/E(n),k-j)$, where $a$ and $b$ are functions defined on the sets $[0,1]\times[0,1]\times\mathbb{Z}$ and $[0,+\infty)\times[0,+\infty)\times\mathbb{Z}$, respectively, $E(n)\to+\infty$, and $n/E(n)\to+\infty$. The joint asymptotic behavior of the spectrum of these matrices is analyzed.
Keywords: asymptotic invertibility, operator, spectrum.
Mots-clés : matrix
@article{FAA_2004_38_1_a6,
     author = {O. N. Zabroda and I. B. Simonenko},
     title = {Asymptotic {Invertibility} and the {Collective} {Asymptotic} {Spectral} {Behavior} of {Generalized} {One-Dimensional} {Discrete} {Convolutions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--82},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a6/}
}
TY  - JOUR
AU  - O. N. Zabroda
AU  - I. B. Simonenko
TI  - Asymptotic Invertibility and the Collective Asymptotic Spectral Behavior of Generalized One-Dimensional Discrete Convolutions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 81
EP  - 82
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a6/
LA  - ru
ID  - FAA_2004_38_1_a6
ER  - 
%0 Journal Article
%A O. N. Zabroda
%A I. B. Simonenko
%T Asymptotic Invertibility and the Collective Asymptotic Spectral Behavior of Generalized One-Dimensional Discrete Convolutions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 81-82
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a6/
%G ru
%F FAA_2004_38_1_a6
O. N. Zabroda; I. B. Simonenko. Asymptotic Invertibility and the Collective Asymptotic Spectral Behavior of Generalized One-Dimensional Discrete Convolutions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 81-82. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a6/

[1] Szego G., Medd. Lunds Univ. Mat. Sem. Suppl. Band Festkrift Marcel Riesz, 1952, 228–238 | MR | Zbl

[2] Grenander U., Segë G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961

[3] Gokhberg I. Ts., Feldman I. A., Dokl. AN SSSR, 165:2 (1965), 268–271 | MR | Zbl

[4] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR | Zbl

[5] Widom H., Adv. in Math., 21 (1976), 1–29 | DOI | MR | Zbl

[6] Ehrhardt T., Shao B., J. Fourier Analysis Application, 7:1 (2001), 71–92 | DOI | MR | Zbl