On the Irreducibility of Commuting Varieties Associated with Involutions of Simple Lie Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 47-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{g}$ be a reductive Lie algebra over an algebraically closed field of characteristic zero and $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ an arbitrary $\mathbb{Z}_2$-grading. We consider the variety $\mathfrak{C}_1=\{(x,y)\mid[x,y]=0\}\subset\mathfrak{g}_1\times\mathfrak{g}_1$, which is called the commuting variety associated with the $\mathbb{Z}_2$-grading. Earlier it was proved by the author that $\mathfrak{C}_1$ is irreducible, if the $\mathbb{Z}_2$-grading is of maximal rank. Now we show that $\mathfrak{C}_1$ is irreducible for $(\mathfrak{g},\mathfrak{g}_0)=(\mathfrak{sl}_{2n},\mathfrak{sp}_{2n})$ and $(\textrm{E}_6,\textrm{F}_4)$. In the case of symmetric pairs of rank one, we show that the number of irreducible components of $\mathfrak{C}_1$ is equal to that of nonzero non-$\vartheta$-regular nilpotent $G_0$-orbits in $\mathfrak{g}_1$. We also discuss a general problem of the irreducibility of commuting varieties.
Keywords: semisimple Lie algebra, $\mathbb{Z}_2$-grading, commuting variety.
@article{FAA_2004_38_1_a3,
     author = {D. I. Panyushev},
     title = {On the {Irreducibility} of {Commuting} {Varieties} {Associated} with {Involutions} of {Simple} {Lie} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {47--55},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a3/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - On the Irreducibility of Commuting Varieties Associated with Involutions of Simple Lie Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 47
EP  - 55
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a3/
LA  - ru
ID  - FAA_2004_38_1_a3
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T On the Irreducibility of Commuting Varieties Associated with Involutions of Simple Lie Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 47-55
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a3/
%G ru
%F FAA_2004_38_1_a3
D. I. Panyushev. On the Irreducibility of Commuting Varieties Associated with Involutions of Simple Lie Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 47-55. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a3/

[1] Antonyan L. V., “O klassifikatsii odnorodnykh elementov $\mathbb{Z}_2$-graduirovannykh poluprostykh algebr Li”, Vestnik MGU, ser. matem., mekh., 1982, no. 2, 29–34 | MR | Zbl

[2] Collingwood D. H., McGovern W., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Co., New York, 1993 | MR | Zbl

[3] Kostant B., Rallis S., “Orbits and representations associated with symmetric spaces”, Amer. J. Math., 93 (1971), 753–809 | DOI | MR | Zbl

[4] Levasseur T., Ushirobira R., “Adjoint vector fields on the tangent space of semisimple symmetric spaces”, J. Lie Theory, 9 (1999), 293–304 | MR | Zbl

[5] Ohta T., “Closures of nilpotent orbits in classical symmetric pairs and their singularities”, Tohoku Math. J., 43:2 (1991), 161–213 | DOI | MR

[6] Panyushev D., “The Jacobian modules of a Lie algebra and geometry of commuting varieties”, Compositio Math., 94 (1994), 181–199 | MR | Zbl

[7] Panyushev D., “On spherical nilpotent orbits and beyond”, Ann. Inst. Fourier, 49 (1999), 1453–1476 | DOI | MR | Zbl

[8] Reeder M., “Desingularizations of some unstable orbit closures”, Pacific J. Math., 167 (1995), 327–343 | DOI | MR | Zbl

[9] Richardson R. W., “Commuting varieties of semisimple Lie algebras and algebraic groups”, Compositio Math., 38 (1979), 311–327 | MR | Zbl

[10] Sabourin H., Yu R. W. T., “Sur l'irreductibilite de la variété commutante d'une paire symétrique réductive de rang 1”, Bull. Sci. Math., 126 (2002), 143–150 | DOI | MR | Zbl

[11] Springer T. A., Shteinberg R., “Klassy sopryazhennykh elementov”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 162–262 | MR

[12] Elashvili A. G., “Tsentralizatory nilpotentnykh elementov v poluprostykh algebrakh Li”, Trudy Tbilisskogo matem. instituta im. Razmadze, 46 (1975), 109–132 | Zbl