Three-Page Embeddings of Singular Knots
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 16-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup with 15 generators and 84 relations is constructed. The center of the semigroup is in a one-to-one correspondence with the set of all isotopy classes of nonoriented singular knots (links with finitely many double intersections in general position) in $\mathbb{R}^3$.
Keywords: isotopy classification, singular knot, three-page embedding, universal semigroup, knotted graph.
@article{FAA_2004_38_1_a1,
     author = {V. V. Vershinin and V. A. Kurlin},
     title = {Three-Page {Embeddings} of {Singular} {Knots}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--33},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a1/}
}
TY  - JOUR
AU  - V. V. Vershinin
AU  - V. A. Kurlin
TI  - Three-Page Embeddings of Singular Knots
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 16
EP  - 33
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a1/
LA  - ru
ID  - FAA_2004_38_1_a1
ER  - 
%0 Journal Article
%A V. V. Vershinin
%A V. A. Kurlin
%T Three-Page Embeddings of Singular Knots
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 16-33
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a1/
%G ru
%F FAA_2004_38_1_a1
V. V. Vershinin; V. A. Kurlin. Three-Page Embeddings of Singular Knots. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 16-33. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a1/

[1] Baez J. C., “Link Invariants of Finite Type and Perturbation Theory”, Lett. Math. Phys., 26 (1992), 43–51 | DOI | MR | Zbl

[2] Brunn H., “Über verknotete Kurven”, Verhandlungen des ersten Internationalen Mathematiker-Kongresses (Zurich 1897), Leipzig, 1898, 256–259

[3] Birman J. S., “New points of view in knot theory”, Bull. Amer. Math. Soc., 28:2 (1993), 253–387 | DOI | MR

[4] Birman J. S., Menasco W. W., “Special positions for essential tori in link complements”, Topology, 33:3 (1994), 525–556 | DOI | MR | Zbl

[5] Cromwell P. R., “Embedding knots and links in an open book. I. Basic properties”, Topology Appl., 64:1 (1995), 37–58 | DOI | MR | Zbl

[6] Cromwell P. R., “Arc presentations of knots and links”, Knot Theory, Proc. Conference (Warsaw, 1995 eds V. F. R. Jones et. al.), Banach Center Publ., 42, Warsaw, 1998, 57–64 | DOI | MR | Zbl

[7] Cromwell P. R., Nutt I. J., “Embedding knots and links in an open book. II. Bounds on arc index”, Math. Proc. Cambridge Philos. Soc., 119:2 (1996), 309–319 | DOI | MR | Zbl

[8] Dasbach O. T., Gemein B., “A faithful representation of the singular braid monoid on three strands”, Knots in Hellas '98, Proc. of the international conference on knot theory and its ramifications (Delphi), Ser. Knots Everything, 24, World Sci. Publishing, River Edge, NJ, 2000, 48–58 | MR | Zbl

[9] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Kodirovanie i lokalnye dvizheniya”, Funkts. analiz i ego pril., 33:4 (1999), 25–37 | DOI | MR | Zbl

[10] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Universalnaya polugruppa”, Funkts. analiz i ego pril., 34:1 (2000), 29–40 | DOI | MR | Zbl

[11] Dynnikov I. A., “Konechno-predstavlennye gruppy i polugruppy v teorii uzlov”, Trudy MIAN, 231, 2000, 231–248 | MR | Zbl

[12] Fenn R., Keyman E., Rourke C., “The singular braid monoid embeds in a group”, J. Knot Theory Ramifications, 7:7 (1998), 881–892 | DOI | MR | Zbl

[13] Gemein B., “Singular braids and Markov's theorem”, J. Knot Theory Ramifications, 6:4 (1997), 441–454 | DOI | MR | Zbl

[14] B. Gemein, “Representations of the singular braid monoid and group invariants of singular knots”, Topology Applications, 114:2 (2001), 117–140 | DOI | MR | Zbl

[15] Jonish D., Millett K. C., “Isotopy invariants of graphs”, Trans. Amer. Math. Soc., 327:2 (1991), 655–702 | DOI | MR | Zbl

[16] Kauffman L., “Invariants of graphs in three-space”, Trans. Amer. Math. Soc., 311:2 (1989), 697–710 | DOI | MR | Zbl

[17] Kauffman L., Vogel P., “Link polynomials and a graphical calculus”, J. Knot Theory Ramifications, 1:1 (1992), 59–104 | DOI | MR | Zbl

[18] Kurlin V. A., “Trekhstranichnye diagrammy Dynnikova zauzlennykh 3-valentnykh grafov”, Funkts. analiz i ego pril., 35:3 (2001), 84–88 | DOI | MR | Zbl

[19] Morton H. R., Beltrami E., “Arc index and the Kauffman polynomial”, Math. Proc. Cambridge Philos. Soc., 123 (1998), 41–48 | DOI | MR | Zbl

[20] Stanford T., “Finite-type invariants of knots, links, and graphs”, Topology, 35:4 (1996), 1027–1050 | DOI | MR | Zbl

[21] Turaev V. G., “Operatornye invarianty svyazok i R-matritsy”, Izv. AN SSSR, ser. matem., 53:5 (1989), 1073–1107 | MR

[22] Vershinin V. V., “On homological properties of singular braids”, Trans. Amer. Math. Soc., 350:6 (1998), 2431–2455 | DOI | MR | Zbl

[23] Vershinin V. V., “Gruppy kos i prostranstva petel”, UMN, 54:2 (1999), 3–84 | DOI | MR | Zbl