Probability Measures on Dual Objects to Compact Symmetric Spaces and Hypergeometric Identities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 4, pp. 49-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive, in several different ways, combinatorial identities which are multidimensional analogs of classical Dougall's formula for a bilateral hypergeometric series of the type ${}_2H_2$. These identities have a representation-theoretic meaning. They make it possible to construct concrete examples of spherical functions on inductive limits of symmetric spaces. These spherical functions are of interest to harmonic analysis.
Keywords: Dougall's formula, bilateral hypergeometric series, spherical functions, symmetric spaces.
@article{FAA_2003_37_4_a9,
     author = {G. I. Olshanskii},
     title = {Probability {Measures} on {Dual} {Objects} to {Compact} {Symmetric} {Spaces} and {Hypergeometric} {Identities}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {49--73},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a9/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - Probability Measures on Dual Objects to Compact Symmetric Spaces and Hypergeometric Identities
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 49
EP  - 73
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a9/
LA  - ru
ID  - FAA_2003_37_4_a9
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T Probability Measures on Dual Objects to Compact Symmetric Spaces and Hypergeometric Identities
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 49-73
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a9/
%G ru
%F FAA_2003_37_4_a9
G. I. Olshanskii. Probability Measures on Dual Objects to Compact Symmetric Spaces and Hypergeometric Identities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 4, pp. 49-73. http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a9/

[1] Andrews G. E., Askey R., Roy R., Special Functions, Cambridge University Press, 1999 | MR | Zbl

[2] Borodin A., Olshanski G., “Harmonic functions on multiplicative graphs and interpolation polynomials”, Electronic J. Comb., 7 (2000), paper 28 ; arXiv: /math/9912124 | MR | Zbl

[3] Borodin A., Olshanski G., “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223 (2001), 87–123 ; arXiv: /math-ph/0010015 | DOI | MR | Zbl

[4] Borodin A., Olshanski G., “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math. (2), 161:3 (2005), 1319–1422 ; arXiv: /math.RT/0109194 | DOI | MR | Zbl

[5] Borodin A., Olshanski G., “$Z$-measures on partitions and their scaling limits”, European J. Combin., 26:6 (2005), 795–834 ; arXiv: /math-ph/0210148 | DOI | MR | Zbl

[6] Dougall J., “On Vandermonde's theorem and some more general expansions”, Proc. Edinburgh Math. Soc., 25 (1907), 114–132 | DOI | Zbl

[7] Dyson F., “Statistical theory of the energy levels of complex systems I–III”, J. Math. Phys., 3 (1962), 140–156, 157–165, 166–175 | DOI | MR | Zbl

[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. I, Nauka, Fizmatlit, M., 1973 | MR

[9] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Fizmatgiz, M., 1962 | MR

[10] Gustafson R. A., “Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$”, SIAM J. Math. Anal., 18:6 (1987), 1576–1596 | DOI | MR | Zbl

[11] Kadell K. W. J., “The Selberg–Jack symmetric functions”, Adv. Math., 130 (1997), 33–102 | DOI | MR | Zbl

[12] Kerov S. V., “Mnogomernoe gipergeometricheskoe raspredelenie i kharaktery unitarnoi gruppy (rabochie zametki 1993)”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody, vyp. 9, ed. A. M. Vershik (to appear)

[13] Kerov S. V., “The boundary of Young lattice and random Young tableaux”, Formal power series and algebraic combinatorics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24, Amer. Math. Soc., Providence, RI, 1996, 133–158 | DOI | MR | Zbl

[14] Kerov S. V., “Anizotropnye diagrammy Yunga i simmetricheskie funktsii Dzheka”, Funkts. analiz i ego pril., 34:1 (2000), 51–64 | DOI | MR | Zbl

[15] Kerov S. V., Asymptotic representation theory of the symmetric group and its applications in analysis, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[16] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd edition, Oxford University Press, 1995 | MR | Zbl

[17] Neretin Yu. A., “Hua-type integrals over unitary groups and over projective limits of unitary groups”, Duke Math. J., 114 (2002), 239–266 | DOI | MR | Zbl

[18] Yu. A. Neretin, “Treugolniki Releya i nematrichnaya interpolyatsiya matrichnykh beta-integralov”, Matem. sb., 194:4 (2003), 49–74 ; arXiv: /math.CA/0301070 | DOI | MR | Zbl

[19] Noumi M., Complementary duality for skew Macdonald polynomials, Preprint, 2001

[20] Okounkov A., Olshanski G., “Shifted Jack polynomials, binomial formula, and applications”, Math. Res. Lett., 4 (1997), 69–78 | MR | Zbl

[21] Okounkov A., Olshanski G., “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Intern. Math. Res. Notices, 1998, no. 13, 641–682 | DOI | MR | Zbl

[22] Olshanski G., “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal. (to appear) | MR

[23] Olshanski G., “An introduction to harmonic analysis on the infinite symmetric group”, Asymptotic Combinatorics with Applications to Mathematical Physics, Lect. Notes in Math., 1815, eds. A. Vershik, Springer-Verlag, 2003, 127–160 | DOI | MR | Zbl

[24] Pickrell D., “Measures on infinite dimensional Grassmann manifold”, J. Func. Anal., 70 (1987), 323–356 | DOI | MR | Zbl

[25] Rains E. M., $BC_n$ symmetric polynomials, Preprint, 2001 ; arXiv: /math.QA/0112035 | MR

[26] Vershik A. M., Kerov S. V., “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Covremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR

[27] Vershik A. M., Kerov S. V., “The Grothendieck group of the infinite symmetric group and symmetric functions with the elements of the $K_0$-functor theory of AF-algebras”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, eds. A. M. Vershik and D. P. Zhelobenko, Gordon and Breach, 1990, 36–114 | MR