Asymptotics of the Uniform Measures on Simplices and Random Compositions and Partitions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 4, pp. 39-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the limiting behavior of uniform measures on finite-dimensional simplices as the dimension tends to infinity and a discrete analog of this problem, the limiting behavior of uniform measures on compositions. It is shown that the coordinate distribution of a typical point in a simplex, as well as the distribution of summands in a typical composition with given number of summands, is exponential. We apply these assertions to obtain a more transparent proof of our result on the limit shape of partitions with given number of summands, refine the estimate on the number of summands in partitions related to a theorem by Erdős and Lehner about the asymptotic absence of repeated summands, and outline the proof of the sharpness of this estimate.
Keywords: limit shape, uniform measure on a simplex.
Mots-clés : composition, partition
@article{FAA_2003_37_4_a8,
     author = {A. M. Vershik and Yu. V. Yakubovich},
     title = {Asymptotics of the {Uniform} {Measures} on {Simplices} and {Random} {Compositions} and {Partitions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {39--48},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a8/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - Yu. V. Yakubovich
TI  - Asymptotics of the Uniform Measures on Simplices and Random Compositions and Partitions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 39
EP  - 48
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a8/
LA  - ru
ID  - FAA_2003_37_4_a8
ER  - 
%0 Journal Article
%A A. M. Vershik
%A Yu. V. Yakubovich
%T Asymptotics of the Uniform Measures on Simplices and Random Compositions and Partitions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 39-48
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a8/
%G ru
%F FAA_2003_37_4_a8
A. M. Vershik; Yu. V. Yakubovich. Asymptotics of the Uniform Measures on Simplices and Random Compositions and Partitions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 4, pp. 39-48. http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a8/

[1] Endryus G., Teoriya razbienii, Nauka, M., 1982 | MR

[2] Corteel S., Pittel B., Savage C. D., Wilf H. S., “On the multiplicity of parts in a random partition”, Random Structures and Algorithms, 14:2 (1999), 185–197 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[3] Eberlein W., “An integral over function space”, Canad. J. Math., 14 (1962), 370–384 | DOI | MR

[4] Erdős P., Lehner J., “The distribution of the number of summands in the partitions of a positive integer”, Duke Math. J., 8 (1941), 335–345 | DOI | MR | Zbl

[5] Gupta H., “On an asymptotic formula in partitions”, Proc. Indian Acad. Sci., A16 (1942), 101–102 | DOI | MR | Zbl

[6] Hwang H.-K., Yeh Y.-N., “Measures of distinctness for random partitions and compositions of an integer”, Adv. in Appl. Math., 19:3 (1997), 378–414 | DOI | MR | Zbl

[7] Kingman J. F. C., “Random discrete distributions”, J. Roy. Statist. Soc. B, 37 (1975), 1–15 | MR

[8] Knopfmacher A., Mays M. E., “Compositions with $m$ distinct parts”, Ars Combinatorica, 53 (1999), 111–128 | MR | Zbl

[9] Pitman J., Yor M., “The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator”, Ann. Probab., 25 (1997), 855–900 | DOI | MR | Zbl

[10] Shepp L., Lloyd S., “Ordered cycle lengths in a random permutation”, Trans. Amer. Math. Soc., 121 (1966), 340–357 | DOI | MR | Zbl

[11] Szalay M., Turan R., “On some problems of statistical theory of partitions, I”, Acta Math. Acad. Sci. Hungary, 29 (1977), 361–379 | DOI | MR | Zbl

[12] Temperley H. N. V., “Statistical mechanics and the partition of number, II”, Proc. Cambridge Philos. Soc., 48 (1952), 683–697 | DOI | MR

[13] Vershik A. M., Kerov S. V., “Asimptotika maksimalnoi i tipichnoi razmernosti neprivodimykh predstavlenii simmetricheskoi gruppy”, Funkts. analiz i ego pril., 19:1 (1985), 25–36 | MR | Zbl

[14] Vershik A. M., Shmidt A. A., “Predelnye mery, voznikayuschie v asimptoticheskoi teorii simmetricheskikh grupp. I, II”, Teoriya veroyatnostei i ee primeneniya, 22:1 (1977), 72–88 ; 23:1 (1978), 42–54 | MR | Zbl | MR | Zbl

[15] Vershik A., Yakubovich Yu., “Limit shape and fluctuations of random partitions of naturals with fixed number of summands”, Moscow Math. J., 1:3 (2001), 457–468 | DOI | MR | Zbl

[16] Vershik A., “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–30 | DOI | MR | Zbl

[17] Wilf H., “Three problems in combinatorial asymptotics”, J. Combin. Theory, Ser. A, 35 (1983), 199–207 | DOI | MR | Zbl