On the Stability of Bifurcation Diagrams of Vanishing Flattening Points
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 88-94

Voir la notice de l'article provenant de la source Math-Net.Ru

On a smooth surface in Euclidean $3$-space, we consider vanishing curves whose projections on a given plane are small circles centered at the origin. The bifurcations diagram of a parameter-dependent surface is the set of parameters and radii of the circles corresponding to curves with degenerate flattening points. Solving a problem due to Arnold, we find a normal form of the first nontrivial example of a flattening bifurcation diagram, which contains one continuous invariant.
Keywords: flattening point, bifurcation diagram, singularity of a family of mappings.
@article{FAA_2003_37_3_a9,
     author = {R. Uribe-Vargas},
     title = {On the {Stability} of {Bifurcation} {Diagrams} of {Vanishing} {Flattening} {Points}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--94},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/}
}
TY  - JOUR
AU  - R. Uribe-Vargas
TI  - On the Stability of Bifurcation Diagrams of Vanishing Flattening Points
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 88
EP  - 94
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/
LA  - ru
ID  - FAA_2003_37_3_a9
ER  - 
%0 Journal Article
%A R. Uribe-Vargas
%T On the Stability of Bifurcation Diagrams of Vanishing Flattening Points
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 88-94
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/
%G ru
%F FAA_2003_37_3_a9
R. Uribe-Vargas. On the Stability of Bifurcation Diagrams of Vanishing Flattening Points. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 88-94. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/