On the Stability of Bifurcation Diagrams of Vanishing Flattening Points
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 88-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a smooth surface in Euclidean $3$-space, we consider vanishing curves whose projections on a given plane are small circles centered at the origin. The bifurcations diagram of a parameter-dependent surface is the set of parameters and radii of the circles corresponding to curves with degenerate flattening points. Solving a problem due to Arnold, we find a normal form of the first nontrivial example of a flattening bifurcation diagram, which contains one continuous invariant.
Keywords: flattening point, bifurcation diagram, singularity of a family of mappings.
@article{FAA_2003_37_3_a9,
     author = {R. Uribe-Vargas},
     title = {On the {Stability} of {Bifurcation} {Diagrams} of {Vanishing} {Flattening} {Points}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--94},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/}
}
TY  - JOUR
AU  - R. Uribe-Vargas
TI  - On the Stability of Bifurcation Diagrams of Vanishing Flattening Points
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 88
EP  - 94
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/
LA  - ru
ID  - FAA_2003_37_3_a9
ER  - 
%0 Journal Article
%A R. Uribe-Vargas
%T On the Stability of Bifurcation Diagrams of Vanishing Flattening Points
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 88-94
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/
%G ru
%F FAA_2003_37_3_a9
R. Uribe-Vargas. On the Stability of Bifurcation Diagrams of Vanishing Flattening Points. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 88-94. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/

[1] Agrachev A. A., Charlot G., Gautier J. P. Zakalyukin V. M., “On stability of generic subriemannian caustics in the three-space”, C. R. Acad. Sci. Paris. Sér. I, 330:6 (2000), 465–470 | DOI | MR | Zbl

[2] Arnold V. I., “Sur les propriétés des projections Lagrangiennes en géométrie symplectique des caustiques”, Rev. Mat. Univ. Complut. Madrid, 8:1 (1995), 109–119 | MR | Zbl

[3] Arnold V. I., “On the Number of Flattening Points of Space Curves”, Amer. Math. Soc. Transl., 171, 1995, 11–22 | MR

[4] Arnold V. I., “K lezhandrovoi teorii Shturma prostranstvennykh krivykh”, Funkts. analiz i ego pril., 32:2 (1998), 1–7 | DOI | MR | Zbl

[5] Arnold V. I. i dr., Zadacha 1993-3 iz knigi Zadachi Arnolda, Fazis, Moskva, 2000 | MR

[6] Kazarian M., “Nonlinear Version of Arnold's Theorem on Flattening Points”, C. R. Acad. Sci. Paris. Sér. I, 323:1 (1996), 63–68 | MR | Zbl

[7] Uribe-Vargas R., “Four-Vertex Theorems in Higher Dimensional Spaces for a Larger Class of Curves than the Convex Ones”, C. R. Acad. Sci. Paris. Sér. I, 330 (2000), 1085–1090 | DOI | MR | Zbl