@article{FAA_2003_37_3_a9,
author = {R. Uribe-Vargas},
title = {On the {Stability} of {Bifurcation} {Diagrams} of {Vanishing} {Flattening} {Points}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {88--94},
year = {2003},
volume = {37},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/}
}
R. Uribe-Vargas. On the Stability of Bifurcation Diagrams of Vanishing Flattening Points. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 88-94. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a9/
[1] Agrachev A. A., Charlot G., Gautier J. P. Zakalyukin V. M., “On stability of generic subriemannian caustics in the three-space”, C. R. Acad. Sci. Paris. Sér. I, 330:6 (2000), 465–470 | DOI | MR | Zbl
[2] Arnold V. I., “Sur les propriétés des projections Lagrangiennes en géométrie symplectique des caustiques”, Rev. Mat. Univ. Complut. Madrid, 8:1 (1995), 109–119 | MR | Zbl
[3] Arnold V. I., “On the Number of Flattening Points of Space Curves”, Amer. Math. Soc. Transl., 171, 1995, 11–22 | MR
[4] Arnold V. I., “K lezhandrovoi teorii Shturma prostranstvennykh krivykh”, Funkts. analiz i ego pril., 32:2 (1998), 1–7 | DOI | MR | Zbl
[5] Arnold V. I. i dr., Zadacha 1993-3 iz knigi Zadachi Arnolda, Fazis, Moskva, 2000 | MR
[6] Kazarian M., “Nonlinear Version of Arnold's Theorem on Flattening Points”, C. R. Acad. Sci. Paris. Sér. I, 323:1 (1996), 63–68 | MR | Zbl
[7] Uribe-Vargas R., “Four-Vertex Theorems in Higher Dimensional Spaces for a Larger Class of Curves than the Convex Ones”, C. R. Acad. Sci. Paris. Sér. I, 330 (2000), 1085–1090 | DOI | MR | Zbl